首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   

2.
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h−1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized. Prepared for 29th Symposium on Biotechnology for Fuels and Chemicals.  相似文献   

3.
The global oxygen uptake rate (OUR) and specific oxygen uptake rates (SOUR) were determined for different values of the volumetric oxygen mass transfer coefficient (15, 43, and 108 h−1), and for varying initial xylose concentrations (50, 100, 150, and 200 g/L) in shaking flasks. The initial cell concentration was 4.0 g/L, and there was only significant growth in the fermentation with the highest oxygen availability. In this condition, OUR increased proportionally to cell growth, reaching maximum values from 2.1 to 2.5 g of O2/(L·h) in the stationary phase when the initial substrate concentration was raised from 50 to 200 g/L, respectively. SOUR showed different behavior, growing to a maximum value coinciding with the beginning of the exponential growth phase, after which point it decreased. The maximum SOUR values varied from 265 to 370 mg of O2/(g of cell·h), indicating the interdependence of this parameter and the substrate concentration. Although the volumetric productivity dropped slightly from 1.55 to 1.18 g of xylitol/(L·h), the strain producing capacity (γ P/X ) rose from 9 to 20.6 g/g when the initial substrate concentration was increased from 50 to 200 g/L. As for the xylitol yield over xylose consumed (γ P/S ), there was no significant variation, resulting in a mean value of 0.76 g/g. The results are of interest in establishing a strategy for controlling the dynamic oxygen supply to maximize volumetric productivity.  相似文献   

4.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L−1 of initial sugar concentration was used. Cell yield (Y X/S) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L−1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.  相似文献   

5.
Debaryomyces hansenii cells were entrapped in Ca-alginate beads and used for producing xylitol from wood hydrolyzates. Batch experiments showed that bioconversion was severely hindered when Ca-alginate beads were hardened with Al3+ solutions. As an alternative to Al3+ hardening, the improvements in both mechanical stability of bioparticles and fermenting ability of the immobilized system derived from using increased concentrations of sodium alginate were assessed. The best results were obtained using a 4% (w/v) Na-alginate solution in the gelification step. This concentration was selected to perform continuous fermentations in a packed-bed reactor using raw or charcoal-treated hydrolyzates (15.5 g of xylose/L) with two different yeasts: Candida guilliermondii and Debaryomyces hansenii. With a final cell concentration of about 50 g of cells/L (0.075 g of cells/g of beads), the volumetric productivities reached with these yeasts in media made from charcoal-treated hydrolyzates were 0.58 and 0.91 g/L·h, respectively.  相似文献   

6.
A batch culture of Saccharomyces cerevisiae for the production of hexokinase was carried out in a 5-L fermentor containing 3 L of culture medium, which was in oculated with cell suspension (about 0.7 g/L), and left ferm entingat 35°C and pH 4.0. The aeration and agitation were adjusted to attain k La values of 15, 60, 135, and 230 h−1. The highest hexokinase productivity (754.6 U/[L h]) and substrate-cell conversion yield (0.21 g/g) occurred for a k La of 60 h−1. Moreover, the formation of hexokinase and cell growth are coupled events, which is in accordance with the constitutive character of this enzyme. Hexokinase formation for k La>60 h−1 was not enhanced probably owing to saturation of the respiratory pathway by oxygen.  相似文献   

7.
Three different yeasts, Pachysolen tannophilus, Debaryomyces hansenii, and Candida guilliermondii, were evaluated to ferment xylose solutions prepared from hardwood hemicellulose hydrolysates, among which P. tannophilus proved to be the most promising microorganism. However, the presence of both lignin-derived compounds (LDC) and acetic acid rendered a poor fermentation. To enhance the fermentation kinetics, different treatments to purify the hydrolysates were studied, including overliming, charcoal adsorption for LDC removal, and evaporation for acetic acid and furfural stripping. Under the best operating conditions assayed, 39.5g/L of xylitol were achieved after 96 h of fermentation, which corresponds to a volumetric productivity of 0.41 g/L·h and a yield of product on consumed substrate of 0.63 g p /gS.  相似文献   

8.
《Analytical letters》2012,45(16):2963-2971
Abstract

The mediated electrochemical method and the intrinsic NADH fluorescence method were employed in evaluating the catabolic activities of three yeasts. The responses from the menadione/ferricyanide system were 70.00 ± 2.25 nA, 61.39 ± 1.76 nA, and 57.18 ± 1.51 nA, respectively, for Saccharomyces cerevisiae, Pachysolen tannophilus, and Pichia stipitis. The NADH fluorescence intensities were 1638 ± 25.46 FI, 1039 ± 18.67 FI, and 963.4 ± 15.78 FI, respectively,for S. cerevisiae, P. tannophilus, and P. stipitis. It was evident that there is a positive relationship between the mediated electrochemical method and the intrinsic NADH fluorescence method in cellular metabolic activity assays.  相似文献   

9.
The continuous production of ethanol from nonsterilized carob pod extract by immobilizedSaccharomyces cerevisiae on mineral kissiris using one- and two-reactor systems has been investigated. A maximum ethanol productivity of 9.6 g/L/h was obtained at an initial sugar concentration of 200 g/L and D = 0.4 h-1 with 68% of theoretical yield and 34% of sugar utilization using the one-reactor system. AtS 0 = 200 g/L, D = 0.05 h-1, 83% of theoretical yield, and 64% of sugar utilization, an ethanol productivity of 2.6 g/L/h was achieved. In the tworeactor system, a maximum ethanol productivity of 11.4 g/L/h was obtained at S0 = 200 g/L and D = 0.4 h-1 with 68.5% of theoretical yield and 41.5% of sugar utilization. The two-reactor system was operated at a constant dilution rate of 0.3 h-1 for 60 d without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical), and sugar utilization were 10.7 g/L/h, 71.5%, and 48%, respectively.  相似文献   

10.
The filamentous fungus Sclerotinia sclerotiorum, grown on a xylose medium, was found to excrete one β-glucosidase (β-glu x). The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, anion-exchange chromatography, and high-performance liquid chromatography (HPLC) gel filtration chromatography. Its molecular mass was estimated to be 130 kDa by HPLC gel filtration and 60 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that β-glu x may be a homodimer. For p-nitrophenyl β-d-glucopyranoside hydrolysis, apparent K m and V max values were found to be 0.09 mM and 193 U/mg, respectively, while optimum temperature and pH were 55–60°C and pH 5.0, respectively. β-Glu x was strongly inhibited by Fe2+ and activated about 35% by Ca2+. β-Glu x possesses strong transglucosylation activity in comparison with commercially available β-glucosidases. The production rate of total glucooligosaccharides (GOSs) from 30% cellobiose at 50°C and pH 5.0 for 6 h with 0.6 U/mL of enzyme preparation was 80 g/L. It reached 105 g/L under the same conditions when using cellobiose at 350 g/L (1.023 M). Finally, GOS structure was determined by mass spectrometry and 13C nuclear magnetic resonance spectroscopy.  相似文献   

11.
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica–enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica–enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10−4 cm/s.  相似文献   

12.
The effect of ammonium nitrate concentration in the citric acid biosynthesis by Aspergillus niger NC-12 in single-stage continuous cultures with biomass retention was investigated. Experiments were carried out in a BIOMER laboratory fermenter with 5 dm3 working volume. At the initial stage of each cultivation, the substrate in the bioreactor contained 1.5 g NH4NO3 dm−3. After 120 h onwards, the bioreactor was fed continuously at a constant dilution rate of 0.009 h−1. NH4NO3 concentration in the feed was varied from one culture to another, ranging between 0.5 g dm−3 and 2.5 g dm−3. Promising results were obtained when NH4NO3 concentration of 1.5 g dm−3 was used. The observed concentration of citric acid (c P) and yield of citric acid with respect to the introduced sucrose (Y P/S) were 117.88 g dm−3 and 78.59 %, respectively. The efficiency coefficient of citric acid biosynthesis (K ef) was very high, amounting to 83.38. Presented at the 33rd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 22–26 May 2006.  相似文献   

13.
Salt-tolerant yeast Saccharomyces cerevisiae ARIF KD-003 was applied to highly sensitive and reproducible absorbance-based biochemical oxygen demand (BODAB-ScII) measurement for seawater. In the previous work, we have studied the BODAB-ScI method using normal Baker's yeast S. cerevisiae, and the excellent feature of the Baker's yeast as uniformly sustainable in solution could successfully be utilized. However, the BODAB-ScI responses were disappeared by the existence of chloride ion as well as seawater. In the present method, uniformity in solution was also observed with S. cerevisiae ARIF KD-003, and salt-tolerance of the yeast was observed even in saturate concentration of sodium chloride. Next, characterizations of the influences of pH and incubation temperature were investigated. After optimum conditions were obtained, two calibration curves were made between 0.33 and 22 mg O2 L−1 BOD using standard solution of glucose glutamic acid (GGA) or mixture of GGA and artificial seawater. Then, excellent reproducibility as the averages of relative standard deviation (R.S.D.av) in two calibration curves (nine points each) was successfully obtained at 1.10% at pure water or 1.03% at artificial seawater standard, respectively. In addition, the 3σ lower detection limit was calculated to be 0.07 mg O2 L−1 BOD, and 0.11 mg O2 L−1 BOD was experimentally detected by increase of the sample volume at 1.5-folds. The storage stability of the S. cerevisiae ARIF KD-003 was obtained at least 4 weeks.  相似文献   

14.
本文以多孔碳纳米管/活性炭复合微球为载体, 以L-色氨酸为配基, 采用环氧氯丙烷偶联法, 制得修饰L-色氨酸的碳纳米管/活性炭复合微球(L-CNTs/AC)。采用扫描电镜、氮气吸附、傅立叶红外光谱、热分析、X射线光电子能谱等对复合微球进行表征;通过体外静态吸附法对其低密度脂蛋白(LDL)吸附能力进行初步研究。结果表明:环氧氯丙烷偶联法可接枝上L-色氨酸。复合微球中碳纳米管加入量越多, 对LDL的吸附能力越强;当碳纳米管加入量为45wt%时, 对LDL的吸附量达4.623 mg·g-1, 是未添加碳纳米管的2.3倍多。这是因为碳纳米管不仅可促进复合微球中20~100 nm孔的形成, 而且还可促进复合微球配基修饰量的增多, 从而大大增强了复合微球对LDL的吸附能力。此复合微球可望开发成一种新型的血液灌流LDL吸附剂。  相似文献   

15.
Aspergillus niger ATCC 9142 mycelium was entrapped in calcium alginate beads and employed in an air-lift completely stirred reactor for continuous production of citric acid. Maximum yield obtained from 10% (w/v) sucrose was 12 g dm-3 with about 40% fermentation efficiency. Maximum rate of production 70 mg g-1 h-1 was about five times that obtained in classical batch fermentation.  相似文献   

16.
A novel microporous hollow fiber membrane-based immobilization technique for whole cells has been developed. Yeast cells (Saccharomyces cerevisiae) were grown on chopped hydrophobic microporous hollow fibers as well as on hydrophilic hollow fibers. This immobilization support was used to carry out fermentation in a tubular bioreactor. Air was passed from time to time to facilitate cell growth. The microbial culture reached a very high cell density level of around 1010/mL of fiber lumen volume. An ethanol concentration of 45 g/L and productivity of 41 g/L-h were obtained with an initial glucose concentration of 100 g/L. The present technique does not have the shortcomings of conventional immobilization methods.  相似文献   

17.
In a previous work, a continuous simultaneous saccharification and fermentation process to produce ethanol from cassava starch was studied, using a set of fixed-bed reactors. The biocatalyst consisted of glucoamylase immobilized in silica particles and co-immobilized with S. cerevisiae in pectin gel. Using 3.8 U mL?1 reactor and 0.05 gwet yeast mL?1 reactor at start-up, starch hydrolysis was the rate-limiting step. Maximum ethanol productivity was 5.8 gethanol L?1 h?1, with 94.0% conversion of total reducing sugars (TRS) and 83.0% of the ethanol theoretical yield. In this work, the molar mass of the substrate and the biocatalyst particle size were reduced in an attempt to improve the bioreactor performance. The diameters of silica and pectin gel particles were reduced from 100 μm and 3–4 mm, respectively, to 60 μm and 1–1.5 mm, and the degree of substrate prehydrolysis by α-amylase was increased. The bioreactor performance was assessed for different loads of immobilized glucoamylase (2.1, 2.8, and 3.8 U mL?1 reactor), for the same initial cell concentration (0.05 gwet yeast.mL?1 reactor). Feeding with 154.0 g L?1 of TRS and using 3.8 U mL?1 reactor, fermentation became the rate-limiting step. Productivity reached 11.7 g L?1 h?1, with 97.0% of TRS conversion and 92.0% of the ethanol theoretical yield. The reactor was operated during 275 h without any indication of destabilization.  相似文献   

18.
A fed-batch culture system with constant feeding (glucose 80 g L−1, 0.25 ml min−1) was used to study the influence of glucose on cell dry weight and exopolysaccharides production from submerged Tremella fuciformis spores in a 5-L stirred-tank bioreactor. The results showed that high levels of cell mass (9.80 g L−1) and exopolysaccharides production (3.12 g L−1) in fed-batch fermentation were obtained after 1 h of feeding, where the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.267 d−1 and 0.14 g g−1. Unlike batch fermentation, maximal cell mass and exopolysaccharides production merely reached 7.11 and 2.08 g L−1; the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.194 d−1 and 0.093 g g−1, respectively. It is concluded that the synthesis of exopolysaccharides can be promoted effectively when feeding glucose at a late exponential phase.  相似文献   

19.
Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h−1 L−1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h−1 L−1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.  相似文献   

20.
The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)max/(WGA +t), (SOR)=t (SOR)max/(WSor+t), vGA=[WGA (GA)max]/(WGA+t)2 and VSOR=[WSOR (SOR)max]/(WSOR+t)2. Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)max= 541 g/L, (SOR)max=552 g/L, WGA=4.8h, WSOR=4.9h, υGA=112.7 g/L· and υSOR=112.7 g/L·.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号