首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enthalpies of solution of various terfenadine samples in methanol and in ethanol were measured. Samples were prepared by crystallization in different solvents. The calorimetric results give important information on crystal structure of the terfenadine forms and on the solute/solvent interactions of this compound with the solvents.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
In this paper the structural characterization of terfenadine crystallized from ethanol-water, ethanol and methanol is performed by infrared spectroscopy. The OH stretching vibration, composed of three markedly overlapped bands, is analyzed by peak fitting. The assignment of the hydrogen bonds was conducted making use of band parameters, spectroscopic data for CCl4 solutions, and molecular dynamics calculations from dimeric systems. Terfenadine just precipitated from solvents is never in the highest crystalline state. This state is reached when the samples are heated at a temperature above 100°C. Some amorphous solid is coprecipitated with the crystalline phase, particularly in methanol. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Single crystals of alpinumisoflavone, C20H16O5, {systematic name: 5-hydroxy-7-(4 hydroxyphenyl)-2, 2-dimethyl-2H, 6H-benzo [1, 2-b: 5, 4-b′]-dipyran-6-one}, solvated with water, methanol, and ethanol, have been obtained. The incorporation of the solvent molecules into the crystal structure creates a new short inter-molecular O–H···O and C–H···O contacts between the alpinumisoflavone moiety and its solvate molecule. The temperatures at which the solvated molecules lose their solvent molecules are 53, 54, and 65 °C for water, methanol, and ethanol, respectively. The observed temperatures at which the solvates efflorescence are reflective of the progressive increase in mass of the solvates from water to ethanol in the series. The benzopyrone moiety shows the usual planar conformation with the pyran ring deformed into a half-chair conformer as seen previously in the other analogous compounds with puckering parameters [Å], 0.2656(8), 0.3703(8), and 0.3957(9), respectively, for the water, ethanol, and methanol solvates. These are higher than the non-solvated alpinumisoflavone compound previously studied. The size of a substituent group proximal to the keto group has a more pronounced effect on the degree of puckering than substitution on the terminal phenyl ring. The attached phenyl ring shows consistent out-of-plane twist from the mean plane of the benzopyrone system as observed previously for this class of compounds. The observed dihedral angles are 30.26(3), 37.75(3), and 34.00(3)°, respectively, for the water, methanol, and ethanol solvates.  相似文献   

4.
The present paper deals with the role of the solvent on thermal peak broadening. One main solvent property that determines the magnitude of the temperature gradient due to the generation of Joule heat in capillary zone electrophoresis is the thermal conductivity. As organic solvents have lower thermal conductivity than water (methanol and acetonitrile, e.g., nearly by a factor of 3) it can be hypothesized that the temperature gradient inside the capillary is more pronounced in organic solvents compared to an aqueous solution. On the other hand, the temperature dependence of the ion mobility (which is responsible for the velocity profile and thus for thermal peak broadening) is smaller in organic solvents. To get insight into the thermal effect of the solvent, first the temperature of a solution in a cylindrical tube was calculated utilizing the heat balance equation. It was shown that the two theoretical models most common in the literature (based on the analytical solution or on an assumption of the parabolic temperature profile in the tube, respectively) give the same results. The latter model was chosen for the further calculations, adding a quadratic term to express the electric conductivity as a function of the temperature. The temperature at the inner capillary wall and center as function of the capillary dimensions and the electric power was computed for electrolytes with a given conductivity at 25.0 degrees C with water, methanol, and acetonitrile as solvents. Capillary cooling systems used were circulating liquid cooling, enforced air-cooling, and natural convection in still air. The mean temperature (averaged over the cross section) resulting from Joule heating was compared with experimentally determined temperatures established upon application of an electric field; the latter temperature was derived from the measurement of the electric conductance of the background electrolyte solution and its (measured) temperature dependence. All investigations were carried out with solutions of the same initial electric conductivity (about 0.5 S.m(-1) at 25.0 degrees C). Agreement is found for natural convection conditions, and the deviation between theoretical and experimental results for the forced air and circulated liquid cooling systems can be related to the poorly defined thermal conditions of the capillaries in commercial instrumentation (with a part in a thermostated cassette and a part outside). For given conditions the temperature gradients in the organic solvents exceed largely those in water, independent of the type of cooling. As a consequence, the thermal plate height is significantly larger in organic solvents, at least under conditions where the deviation from the Nernst-Einstein limiting case is not too high. However, even for the maximum applicable field strengths the thermal plate height contributions are negligible compared to longitudinal diffusion in all solvents.  相似文献   

5.
Lipophilic calix[4]resorcinarene derived from lauryl aldehyde forms stable crystalline solvates with a range of organic solvents: acetone, 1,4-dioxane, methylethylvketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, butyronitrile, methanol, 1,2-dimethoxybenzene and acetonitrile. The composition and thermal stability of these solvates was followed by thermogravimetric method, indicating a stoichiometry ranging from 1 to 3 (calixresorcinarene/solvent). The activation energy was evaluated for the selected solvates. Molecular modelling, using Hyperchem 5.0 software, was applied to the selected solvates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We present results obtained by dielectric spectroscopy in wide frequency (10(-2)-10(9) Hz) and temperature ranges on human hemoglobin in the three different solvents water, glycerol, and methanol, at a solvent level of 0.8 g of solvent/g of protein. In this broad frequency region, there are motions on several time-scales in the measured temperature range (110-370 K for water, 170-410 K for glycerol, and 110-310 K for methanol). For all samples, the dielectric data shows at least four relaxation processes, with frequency dependences that are well described by the Havriliak-Negami or Cole-Cole functions. The fastest and most pronounced process in the dielectric spectra of hemoglobin in glycerol and methanol solutions is similar to the alpha-relaxation of the corresponding bulk solvent (but shifted to slower dynamics due to surface interactions). For water solutions, however, this process corresponds to earlier results obtained for water confined in various systems and it is most likely due to a local beta-relaxation. The slowing down of the glycerol and methanol relaxations and the good agreement with earlier results on confined water show that this process is affected by the interaction with the protein surface. The second fastest process is attributed to motions of polar side groups on the protein, with a possible contribution from tightly bound solvent molecules. This process is shifted to slower dynamics with increasing solvent viscosity, and it shows a crossover in its temperature dependence from Arrhenius behavior at low temperatures to non-Arrhenius behavior at higher temperatures where there seems to be an onset of cooperativity effects. The origins of the two slowest relaxation processes (visible at high temperatures and low frequencies), which show saddlelike temperature dependences for the solvents water and methanol, are most likely due to motions of the polypeptide backbone and an even more global motion in the protein molecule.  相似文献   

7.
采用自制的相平衡研究装置, 测定了RbBr-CH3OH/C2H5OH-H2O和CsBr-CH3OH/C2H5OH-H2O四个三元体系在25、35、45 ℃三个温度下的平衡溶解度;同时得到了四个三元体系饱和溶液中不同盐浓度下的折光率数据. 实验结果表明,在所有的体系中, 随着甲醇或乙醇质量分数的增加, RbBr和CsBr 在水中的溶解度逐渐降低; 并且折光率也逐渐减小. 用经验关联方程对溶解度进行了拟合, 同时给出了CH3OH 和C2H5OH 分别对RbBr和CsBr的盐析率曲线.  相似文献   

8.
Studies on systems of salts and mixed solvents. XXIV. System magnesium chloride—acetone—water Solubilities and parageneses of the solid phase of the system MgCl2? H2O? (CH3)2CO as well as densities and kinematic viscosities of saturated equilibrium solutions are presented for temperatures of 15, 25, 35, and 50°C. Two liquid phases exist in a wide range of concentration of the solvent mixture. In comparison with the analogous methanol system the addition of acetone does not result in the formation of solid MgCl2 solvates containing acetone. Dehydration of MgCl2 · 6 H2O (bischofite) cannot be observed, either.  相似文献   

9.
RbBr/CsBr-CH3OH/C2H5OH-H2O三元体系的溶解度   总被引:1,自引:0,他引:1  
采用自制的相平衡研究装置,测定了RbBr-CH_3OH/C_2H_5OH-H_2O和CsBr-CH_3OH/C_2H_5OH-H_2O四个三元体系在25、35、45℃三个温度下的平衡溶解度;同时得到了四个三元体系饱和溶液中不同盐浓度下的折光率数据.实验结果表明,在所有的体系中,随着甲醇或乙醇质量分数的增加,RbBr和CsBr在水中的溶解度逐渐降低;并且折光率也逐渐减小.用经验关联方程对溶解度进行了拟合,同时给出了CH_3OH和C_2H_5OH分别对RbBr和CsBr的盐析率曲线.  相似文献   

10.
《印度化学会志》2023,100(5):100995
The objective was to evaluate the effect of temperature on the degradation of total phenolic compounds (TPC) and antioxidant activities (AA), in addition to the effects of solvents (water, ethanol and methanol) and methods of maceration and ultrasound in the extraction of polyphenols from the jaboticaba peel powder (JPP). The thermal stability of the TPC and AA (DPPH, FRAP and ABTS) from JPP at different temperatures (90, 110 and 130 °C) was monitored over time (0–360 min). The effect of solvents (water, ethanol and methanol) and methods of maceration and ultrasound on the extraction of polyphenols from JPP was also evaluated. The best conditions for extracting polyphenols were quantified by HPLC. After extraction, the morphology of the powders was evaluated by scanning electron microscopy (SEM). The study of thermal stability showed that the ABTS radical presented a lower stability with time when compared to the other radicals. In addition, it was observed that the thermal degradation of TPC at the studied temperatures and that there is a positive correlation between TPC and AA. In the ultrasonic extraction using ethanol and methanol in the mass ratio of JPP/volume of solvent 1:20, the maximum TPC amounts were obtained. In the analysis by HPLC, a content of gallic acid (16.28 mg L−1) and hesperidin (9.26 mg L−1) were found for ethanol and methanol, respectively. The SEM images indicated that the changes in the structure favored the formation of pores contributing to the solubilization of TPC and consequently AA.  相似文献   

11.
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies have been performed on a commercial preparation of spironolactone and on five solvates (acetonitrile, ethyl acetate, ethanol, methanol, and benzene) prepared from it by recrystallization at room temperature. The results of these studies are discussed and compared with those recently reported in the literature for similar preparations. The variable behaviour of these solvates in their release (and partial retention) of solvent before the onset of melting, meant that their stoichiometry had to be measured by elemental microanalyses. Solvent loss from solvate decomposition was followed by thermogravimetric analysis (TGA). Solvate decomposition and spironolactone melting temperatures and enthalpies were determined by differential scanning calorimetry (DSC). The parent substance and two of the solvates (methanol and ethanol) exhibited small exotherms in addition to the expected endotherms.  相似文献   

12.
The enthalpies of solution of sodium iodide in methanol, ethanol and acetone and in mixtures of methanol and ethanol with water were measured over wide ranges of electrolyte concentration and temperature. Standard enthalpies of solution, transfer enthalpies of NaI from alcohols to alcohol-water mixtures, and temperature coefficients of enthalpies of solution have been calculated. Thermodyanmic characteristics of solution and solvation of the Na+ and I ions in acetone and ethanol were determined at 243–298 K. It is noted that at lower temperatures the disruption of solvent structure by ions is a local effect. The presence of negative solvation of the Na+ and I ions in alcohol-water mixtures at lower temperatures is demonstrated.  相似文献   

13.
The crystalline solvates containing fullerenes and (di)methylnaphthalenes were investigated by thermal analyses and X-ray diffraction methods. It was found that C60 with (di)methylnaphthalenes forms two types of stable solvates: either at the molar ratio 1:2 decomposing at temperatures close to 100°C or at 1:1 molar ratio decomposing in the temperature range 120–214°C. Crystalline lattice and thermal stability of the solvates depends on the structure of the solvent molecules. The strong solute-solvent interaction is also manifested by the modification of the C60 absorption spectra in solution. The results are discussed using semiempirical quantum chemistry methods. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Porous membranes having various average pore sizes, ranging from 1 to 4 nm, were prepared from silica–zirconia composite colloidal sols by sol–gel processes, and were used for nanofiltration (NF) experiments in non-aqueous solutions of ethanol and methanol. Silica–zirconia membranes, which were tested in pure alcohol solutions for the first time after the preparation of the membrane, showed a gradual decrease in flux for approximately 100 h and then reached a steady flux. When the feed, after reaching the steady flux with ethanol, was changed to another alcohol, steady flux was attained after only several hours. Ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (PEG) of various molecular weights (PEG400, 600, 1000, and 2000) were nanofiltrated in methanol and ethanol solutions at 50°C. Rejections in non-aqueous solutions increased with applied pressure, which is similar to aqueous solutions. Control of pore size of silica–zirconia membranes showing molecular weight cut-offs in methanol solutions at 300, 600, 1000, and >1000, respectively, was possible by the appropriate choice of colloidal particle sizes. Rejection in methanol solution showed a tendency similar to that in ethanol solution, while rejection in methanol was slightly larger than in ethanol solutions. In addition, rejection in water was much smaller than in methanol solution. For example, the rejection of PEG600 in water and methanol was 0.03 and 0.74, respectively. These results suggest that solvent type plays an important role in determining rejection, as a result of the interaction with solvents and/or membrane surface.  相似文献   

15.
Variable temperature solution 13C NMR of [Mo(CO)3(diglyme)] shows that the chelating diglyme ligand is displaced by the monodentate solvents acetone, methanol and ethanol at low temperature. Free and coordinated solvent are observed at low temperature while at ambient temperature rapid exchange prevents the observation of coordinated solvent.  相似文献   

16.
Lanthanum niobates were prepared by a new polymeric complex sol–gel method using Nb-citrate or -tartrate complexes in different solvent (ethanol or methanol) and calcination at 750–1,050 °C. The perovskite La1/3NbO3 and pyrochlore LaNb5O14 phases were formed after calcination at 900 and 1,050 °C from gels synthesized from ethanol and methanol solvents respectively. The very similar xerogel thermal decomposition processes were observed independently on applied solvents, where the pyrochlore monoclinic LaNbO4 and Nb2O5 phases were intermediate products at lower calcination temperatures during transformation. The particle morphologies changed from spherical 20–50 nm particles at 750 °C to granular LN particles (ethanol) or rectangular (methanol) at 1,050 °C. HRTEM images and SAED verified the coexistence of minority monoclinic LaNbO4 phase with majority phases in individual LN particles after annealing. The strong effect of alcohol solvent on phase formation was shown, while the effect of chelating agent was insignificant.  相似文献   

17.
In an effort to improve understanding of dissolution behaviour of fullerenes and their simple chemical derivatives the binary systems of C60, C70 and the piperazine monoadduct of [60] fullerene C60 N2C4H8 with a series of aromatic solvents have been studied by means of DSC. In certain systems solid solvates have been found to be the thermodynamically stable phases relative to saturated solution at room temperature. Identified solid solvates were characterized by their compositions, temperatures and enthalpies of incongruent melting transitions. The regularities in thermodynamic stability of the solvated crystals have been discussed along with dissolution properties of fullerenes and the derivative. Certain correlations have been observed.  相似文献   

18.
19.
Enthalpies of solution of NaClO4 have been measured calorimetrically in the aprotic solvent N,N-dimethylformamide at several temperatures ranging from 5 to 80°C. The data have been extrapolated to infinite dilution to obtain standard enthalpies of solution. The integral enthalpy of solution method was used to evaluate the standard partial molal heat capacity c p2 ° of NaClO4 in N,N-dimethylformamide as a function of temperature. This function is almost temperature invariant in N,N-dimethylformamide, in contrast to its complex behavior in aqueous and methanolic solutions. This suggests that ionic heat capacities are extremely sensitive to the structure of solutions and that this function can be used as a probe for studying the structure of electrolytic solutions. The complex temperature dependence of c p2 ° in water and methanol can be explained in terms of the decreased hydrogen bonding and dielectric constant of the solvents at the higher temperatures. The data show that one must be cautious in interpreting single-temperature heat capacities of transfer between solvents.This paper was taken from the work submitted by Shuya Chang to the Graduate School of the University of Miami, in partial fulfillment of the requirement for the Master of Science Degree.  相似文献   

20.
The dissolution of polyhalite ore in a hydrochloric acid solution at temperatures 50–100°C and salting out of potassium and magnesium sulfates from the obtained solutions with the use of selective organic solvents was studied. The effect exerted by temperature and solvent type on the extraction process was determined. A principal scheme of the ore processing was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号