首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homoleptic bis(dithiolene) complexes [M(S(2)C(2)R(2))(2)](2) (M = Fe, Co; R = p-anisyl) undergo two successive reductions to form anions that display [M(S(2)C(2)R(2))(2)](2)(2-) <--> 2[M(S(2)C(2)R(2))(2)](1-) solution equilibria. The neutral dimers react with Ph3P to form square pyramidal [M(Ph(3)P)(S(2)C(2)R(2))(2)](0). Voltammetric measurements upon [M(Ph(3)P)(S(2)C(2)R(2))(2)](0) in CH(2)Cl(2) reveal only irreversible features at negative potentials, consistent with Ph(3)P dissociation upon reduction. Dissociation and reassociation of Ph(3)P from and to [Fe(Ph(3)P)(S(2)C(2)R(2))(2)](0) is demonstrated by spectroelectrochemical measurements. These collective observations form the basis for a cycle of reversible, electrochemically controlled binding of Ph(3)P to [M(S(2)C(2)R(2))(2)](2) (M = Fe, Co; R = p-anisyl). All members of the cycle ([M(S(2)C(2)R(2))(2)](2)(0), [M(S(2)C(2)R(2))(2)](2)(1-), [MM(S(2)C(2)R(2))(2)](2)(2-), [M(S(2)C(2)R(2))(2)](1-), [M(Ph(3)P)(S(2)C(2)R(2))(2)]) for M = Fe, Co have been characterized by crystallography. Square planar [Fe(S(2)C(2)R(2))(2)](1-) is the first such iron dithiolene species to be structurally identified and reveals Fe-S bond distances of 2.172(1) and 2.179(1) Angstrom, which are appreciably shorter than those in corresponding square planar dianions.  相似文献   

2.
Stereospecific substitutions of optically pure 1-(pyridinyl)ethyl methanesulfonates with various amines are described. The reaction of (R)- or (S)-1-(2-pyridinyl)ethyl methanesulfonate with primary amines, including amino acid esters, gives N-substituted (S)- or (R)-1-(2-pyridinyl)ethylamines (4) with inversion of the configuration. Secondary cyclic amines are also reacted with (R)-2 to give the corresponding substituted amines (5) in excellent yields. Optically pure and meso triamine ligands having two pyridine rings, (S,S)-4f and meso-4f, (S,S)-9e, (S,R)-9e, and (S,S)-9f, have been prepared in stereochemically pure form by this method. Not only the substitution reaction of optically active 2 but also that of 1-(4-pyridinyl)ethyl and 1-(3-pyridinyl)ethyl methanesulfonates 11 and 14 take place stereospecifcally with inversion of the chiral center.  相似文献   

3.
The borane complexes cyclo-1,4-(BH3)2(P4Ph4CH2) (3) and cyclo-1,2-(BH3)2(P5Ph5) (4) were prepared by reaction of cyclo-(P4Ph4CH2) and cyclo-(P5Ph5) with BH3(SMe2). Only the 2:1 complexes 3 and 4 were isolated, even when an excess of the borane source was used. In solution, 3 exists as a mixture of the two diastereomers (R(P)*,S(P)*,S(P)*,R(P)*)-(+/-)-3 and (R(P)*,R(P)*,R(P)*,R(P)*)-(+/-)-3. However, in the solid state the (R(P)*,S(P)*,S(P)*,R(P)*)-(+/-) diastereomer is the major stereoisomer. Similarly, while only one isomer of 4 is observed in its X-ray structure, NMR spectroscopic investigations reveal that it forms a complex mixture of isomers in solution. 3 may be deprotonated with tBuLi to give the lithium salt cyclo-1,4-(BH3)2(P4Ph4CHLi) (3 x Li), though this could not be isolated in pure form.  相似文献   

4.
(R)- or (S)-2-Methylferrocene carboxylic acids, (R)-1 or (S)-1, (R)- or (S)-2-phenylbutanoic acid, (R)-2 or (S)-2, and (R)- or (S)-2-propanoic acid, (R)-3 or (S)-3, can be imprinted in thin TiO2 films on the gate surface of ion-sensitive field-effect transistor (ISFET) devices. The imprinting is performed by hydrolyzing the respective carboxylate TiIV butoxide complex on the gate surface, followed by washing off the acid from the resulting TiO2 film. The imprinted sites reveal chiroselectivity only towards the sensing of the imprinted enantiomer. The chiral recognition sites reveal not only chiroselectivity but also chirospecificity and, for example, the (R)-2-imprinted film is active in the sensing of (R)-2, but insensitive towards the sensing of (R)2-phenylpropanoic acid, (R)-3, which exhibits a similar chirality. Similarly, the (R)-3-imprinted film is inactive in the analysis of (R)-2. The chiroselectivity and chirospecificity of the resulting imprinted films are attributed to the need to align and fit the respective substrates in precise molecular contours generated in the cross-linked TiO2 films upon the imprinting process.  相似文献   

5.
PNA oligomers H-GTAGATCAT-lys-NH2 with cis-(1S,2R/1R,2S)-cyclohexyl-T (III) in the backbone form PNA:RNA duplexes with Tm approximately 30-50 degrees C higher than that of PNA:DNA duplexes. In comparison, cis-(1S,2R/1R,2S)-cyclopentyl PNA-T (IV) form highly stable duplexes with both RNA and DNA without discrimination.  相似文献   

6.
Three complexes containing Ni(II)N(amine)2S(thiolate)2 units have been prepared and characterized. Both (R,R)-N,N'-bis(1-carboxy-2-mercaptoethyl)-1,2-diaminoethane [(R,R)-1] and N,N'-bis(2-methyl-2-mercaptoprop-1-yl)-1,3-diamino-2,2-dimethylpropane (4) act as tetradentate S-N-N-S ligands to form complexes Ni((R,R)-1) and Ni4 with nearly planar cis-NiN2S2 units. The N-Ni-N and S-Ni-S angles differ significantly in the two complexes yet are very nearly supplementary. The 1,3-disubstituted cyclohexane species rac-N,N'-bis(2-mercapto-2-methylprop-1-yl)-1,3-cyclohexanediamine (6) behaves as a bis(bidentate-N,S) ligand to form an unexpectedly intense-blue dinickel complex (1S,3R,1'S,3'R)-7, which contains two trans-NiN2S2 units bridged by 1,3-disubstituted cyclohexane groups. The coordination geometry in (1S,3R,1'S,3'R)-7 is distorted 15 degrees toward tetrahedral, most likely as a result of steric crowding, suggested by several short contacts between the NiS2 units and both the cyclohexyl and gem-dimethyl groups of the N,S-chelate rings. The complexes exhibit rich UV-vis spectra, whose deconvoluted bands are now fully assigned, from low to high energy, as ligand field (LF), pi(S) --> Ni(II) ligand-to-metal charge transfer (LMCT), sigma(S) --> Ni(II) LMCT, sigma(N) --> Ni(II) LMCT, localized S, and S,N Rydberg transitions. The unusually intense LF absorptions shown by (1S,3R,1'S,3'R)-7 are thought to result from relaxation of the Laporte restriction arising from the 15 degrees tetrahedral twist.  相似文献   

7.
Two new C2 and D2 symmetrical dioxatetraaza 18-membered macrocycles [(R,R)-1 and (S,S,S,S)-2] are efficiently synthesized in enantiomerically pure forms by a chemoenzymatic method starting from (+/-)-trans-cyclohexane-1,2-diamine. The protonation constants and the binding constants with different chiral dicarboxylates are determined in aqueous solution by means of pH-metric titrations. The triprotonated form of (S,S,S,S)-2 shows moderate enantioselectivity with malate and tartrate anions (deltadeltaG=0.62 and 0.66 kcal mol(-1), respectively), being the strongest binding observed in both cases with the L enantiomer. Good enantiomeric discrimination is obtained with tetraprotonated (R,R)-1 and N-acetyl aspartate, the complex with the D-enantiomer being 0.92 kcalmol(-1) more stable than its diastereomeric counterpart. Despite the lack of enantioselectivity of tri- and tetraprotonated (R,R)-1 for the tartrate anion, a very good diastereopreference for meso-tartrate is found. All these experimental results allow us to propose a model for the host-guest structure based on coulombic interactions and hydrogen bonds.  相似文献   

8.
The reaction of chiral (2R,1'S)- or (2S,1'S)-2-(1-aminoalkyl)epoxides, 1 or 2 with a variety of organolithium compounds to obtain the corresponding (alphaS,betaS)- or (alphaR,betaS)- beta-amino alcohols in enantiopure form is reported. In both cases, the opening of the oxirane ring at C-3 proceeded with total regioselectivity. Moreover, the ring opening of aminoepoxides 1 or 2 by hydride (utilizing LiAlH4) to obtain the corresponding (2S,3S)- or (2R,3S)-3-aminoalkan-2-ols is also described. The reaction of 1 or 2 with LiAlD4 in place of LiAlH4 gave the corresponding (2S,3S)- or (2R,3S)-3-amino-1-deuterioalkan-2-ols.  相似文献   

9.
Both enantiomers of Wieland-Miescher ketone [3,4,8, 8a-tetrahydro-8a-methyl-1,6(2H,7H)-naphthalenedione], in a highly enantiomerically enriched form, became readily available by a newly developed kinetic resolution with yeast-mediated reduction. From a screening of yeast strains, Torulaspora delbrueckii IFO 10921 was selected. The collected cells of this strain, obtained by an incubation in a glucose medium, smoothly reduced only the isolated carbonyl group of the (S)-enantiomer, while the (R)-enantiomer remained intact. Starting from both enantiomers ( approximately 70% ee) prepared by an established proline-mediated asymmetric Robinson annulation, the reduction with T. delbrueckii gave the (R)-enantiomer (98% ee) and the corresponding alcohol (4aS,5S)-4,4a, 5,6,7,8-hexahydro-5-hydroxy-4a-methyl-2(3H)-naphthalenone (94% ee, 94% de) in preparative scale in nearly quantitative yields. An approach for the asymmetric synthesis of the Wieland-Miescher ketone was also successful. 2-Methyl-2-(3-oxobutyl)-1,3-cyclohexanedione, the prochiral precursor, was reduced with this strain to give a cyclic acetal form of (2S, 3S)-3-hydroxy-2-methyl-2-(3-oxobutyl)cyclohexanone, in a stereomerically pure form.  相似文献   

10.
Typical cis-PtA(2)G(2) models of key DNA lesions formed by cis-type Pt anticancer drugs are very dynamic and difficult to characterize (A(2) = diamine or two amines; G = guanine derivative). Retro models have A(2) carrier ligands designed to decrease dynamic motion without eliminating any of three possible conformers with bases oriented head-to-tail (two: DeltaHT and LambdaHT) or head-to-head (one: HH). All three were found in NMR studies of eight Me(2)DABPtG(2) retro models (Me(2)DAB = N,N'-dimethyl-2,3-diaminobutane with S,R,R,S and R,S,S,R configurations at the chelate ring N, C, C, and N atoms, respectively; G = 5'-GMP, 3'-GMP, 5'-IMP, and 3'-IMP). The bases cant to the left (L) in (S,R,R,S)-Me(2)DABPtG(2) adducts and to the right (R) in (R,S,S,R)-Me(2)DABPtG(2) adducts. Relative to the case in which the bases are both not canted, canting will move the six-membered rings closer in to each other ("6-in" form) or farther out from each other ("6-out" form). Interligand interactions between ligand components near to Pt (first-first sphere communication = FFC) or far from Pt (second-sphere communication = SSC) influence stability. In typical cases at pH < 8, the "6-in" form is favored, although the larger six-membered rings of the bases are close. In minor "6-out" HT forms, the proximity of the smaller five-membered rings could be sterically favorable. Also, G O6 is closer to the sterically less demanding NH part of the Me(2)DAB ligand, possibly allowing G O6-NH hydrogen bonding. These favorable FFC effects do not fully compensate for possibly stronger FFC dipole effects in the "6-in" form. SSC, phosphate-N1H cis G interactions favor LambdaHT forms in 5'-GMP and 5'-IMP complexes and DeltaHT forms in 3'-GMP and 3'-IMP complexes. When SSC and FFC favor the same HT conformer, it is present at >90% abundance. In six adducts [four (S,R,R,S)-Me(2)DABPtG(2) and (R,S,S,R)-Me(2)DABPtG(2) (G = 3'-GMP and 3'-IMP)], the minor "6-out" HT form at pH approximately 7 becomes the major form at pH approximately 10, where G N1H is deprotonated, because the large distance between the negatively charged N1 atoms minimizes electrostatic repulsion and probably because the G O6-(NH)Me(2)DAB H-bond (FFC) is strengthened by N1H deprotonation. At pH approximately 10, phosphate-negative N1 repulsion is an unfavorable SSC term. This factor disfavors the LambdaHT R form of two (R,S,S,R)-Me(2)DABPtG(2) (G = 5'-GMP and 5'-IMP) adducts to such an extent that the "6-in" DeltaHT R form remains the dominant form even at pH approximately 10.  相似文献   

11.
基于2,2'-二取代的联萘衍生物在手性构型上高度稳定的特点,分别以光学活性的(R)-和(S)-2,2'-二乙炔基-1,1'-联萘为模板,设计了2个有趣的拓扑环芳分子四联萘笼状对映异构体(R,R,R,R)-2和(S,S,S,S)-2.其合成路线涉及保护基的控制导入、苯连接桥的链接、保护基的脱去以及偶合成环反应4个步骤.用MS,IR,UV-Vis,1HNMR,13CNMR和元素分析等技术对其进行了表征,并比较了其光学性质.研究结果表明,采用这种模板合成方法能够有效地获得具有单一手性的目标化合物.镜像特征的圆二色(CD)谱和比旋光度[α]D的测定结果清楚地反映了它们的对映异构关系.  相似文献   

12.
Diastereomeric clusters of general formula [MAB(2)](+) and [MA(2)B](+) (M = Li(I), Na(I), Ag(I), Ni(II)-H, or Cu(II)-H; A = (R)-(-)- and (S)-(+)-(1-aminopropyl)phosphonic acid; B = (1R)-(-)- and (1S)-(+)-(1-aminohexyl)phosphonic acid) have been readily generated in the electrospray ionization (ESI) source of a triple-quadrupole mass spectrometer and their collision-induced dissociation (CID) investigated. CID of diastereomeric complexes, e.g. [MA(S)(B(S))(2)](+) and [MA(R)(B(S))(2)](+), leads to fragmentation patterns characterized by R(homo) = [MA(S)B(S)](+)/[M(B(S))(2)](+) and R(hetero) = [MA(R)B(S)](+)/[M(B(S))(2)](+) abundance ratios, which depend upon the relative stability of the diastereomeric [MA(S)B(S)](+) and [MA(R)B(S)](+) complexes in the gas phase. The chiral resolution factor R(chiral) = R(homo)/R(hetero) is found to depend not only on the nature of the M ion but also on that of the fragmenting species, whether [MAB(2)](+) or [MA(2)B](+). The origin of this behavior is discussed.  相似文献   

13.
(R)-Phenylglycinol is shown to be an efficient building block for the synthesis of chiral amino diols in pure diastereomeric form by epoxide ring-opening reactions. The reaction with rac-trans-stilbene oxide gives [HOCH(2)-(R)-PhCH]NH[(S)-PhCH-(R)-PhCHOH] [2(R)-3(R)-4(S)-HNO(2)H(2)] in 32% yield, which can be methylated at nitrogen to give enantiomerically pure [HOCH(2)-(R)-PhCH]NCH(3)[(S)-PhCH-(R)-PhCHOH] [2(R)-3(R)-4(S)-MeNO(2)H(2)]. These amino diol ligands have been used to prepare chiral dioxomolybdenyl complexes of the formula N(R)-2(R)-3(R)-4(S)-(HNO(2))MoO(2) (1) and N(R)-2(R)-3(R)-4(S)-(MeNO(2))MoO(2) (2). The absolute configuration at each stereocenter in the Mo(VI) complexes has been established by (1)H NOESY spectroscopy. The configuration determined for 1 has been confirmed by an X-ray analysis. Crystal data: orthorhombic P2(1)2(1)2(1), a =7.620(3), b = 13.589(2), c = 20.339(3) ?, Z = 4, R = 0.0336. The structure consists of a polymeric chain of N(R)-2(R)-3(R)-4(S)-(HNO(2))MoO(2) molecules connected through unsymmetrical Mo=O --> Mo bridges. Each metal center is coordinated in a distorted octahedral geometry by a cis dioxo unit and by two trans alkoxo atoms. The coordination polyhedron is completed by a nitrogen atom and by a bridging oxo oxygen atom from an adjacent molecule. Compound 2 catalyzes the oxidation of PPh(3) to OPPh(3) by DMSO through a mechanism that involves the intermediacy of a Mo(IV) species.  相似文献   

14.
Rapid atropisomerization of cisplatin-DNA cross-link models, cis-PtA(2)G(2) (A(2) = two amines or a diamine, G = guanine derivative, bold font indicating a guanine not linked to another guanine), makes their NMR spectra uninformative. The conformers [two head-to-tail (DeltaHT and LambdaHT) conformers, one head-to-head (HH) conformer] are detected in (CCC)PtG(2) retro models (CCC = chirality-controlling chelates designed to reduce rotation around the G N7 to Pt bond by destabilizing the transition state). Clear trends are found with four CCC ligands, 2,2'-bipiperidine (Bip) and N,N'-dimethyl-2,3-diaminobutane (each with S,R,R,S and R,S,S,R configurations at the chelate ring N, C, C, and N atoms, respectively). S,R,R,S ligands favor left-handed G base canting and the LambdaHT form; R,S,S,R ligands favor right-handed canting and the DeltaHT form. The HH conformer is normally negligible unless G = 5'-GMP. However, understanding this 5'-phosphate effect is complicated by possible interligand interactions of the 5'-phosphate with the N1H of the cis-5'-GMP and a CCC NH; these interactions are referred to as second-sphere (SSC) and first-to-second-sphere (FSC) communication, respectively. We now investigate the four (CCC)PtG(2) models with 1-Me-5'-GMP, a G lacking the N1H needed for SSC. The phosphate location makes FSC possible in the major but not the minor HT form. The major form should increase from pH 3 to pH 7 because the phosphate is deprotonated at pH 7. However, the major DeltaHT form for the R,S,S,R pair did not change in abundance, and the major LambdaHT form for the S,R,R,S pair actually decreased. Thus, FSC is weak. At pH approximately 7 the HH conformer of the S,R,R,S pair had an abundance (40-44%) higher than that in any reported cis-PtA(2)G(2) adduct. FSC involving one 1-Me-5'-GMP could play a role. The high HH abundance and use of a pH jump experiment with (S,R,R,S)-BipPt(1-Me-5'-GMP)(2) allowed us to obtain the first deconvoluted CD spectrum for a cis-PtA(2)G(2) HH conformer. The CD features for the HH conformer are much weaker than for the HT conformers. Our findings are best interpreted to indicate that FSC is not important in aqueous solution, especially for the HT form. Weak FSC is consistent with recent models of the cross-link in duplexes. In contrast, crystals of fluxional models often reveal FSC, but not the more important SSC. SSC was unrecognized until our retro model studies, and the new results reinforce the value of studying retro models for identifying interactions in solution.  相似文献   

15.
Chiral acid chlorides were reacted with isoquinoline and 6,7-dimethoxy-3,4-dihydroisoquinoline to form diastereomeric Reissert compounds 8-11 and 18-21, respectively. The best diastereoselectivity (80:20) was achieved in formation of the 9-phenylmenthyl derivative 20. The diastereomers of 2-l-menthoxycarbonyl-1,2-dihydroisoquinaldonitriles (S)-8/(R)-8), formed in equal amounts, were inseparable. However, the individual diastereomers of 2-cholesteryloxycarbonyl-1,2-dihydroisoquinaldonitriles ((R)-11 and (S)-11) and the 2-l-menthoxycarbonyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinaldonitriles ((S)-19/(R)-19)) were each readily purified. (S)-8/(R)-8 (1:1) via the corresponding anions (NaH, -40 degrees C, DMF) with pivaldehyde yielded in 82:18 predominance the S-diastereomer of 1-isoquinolyl tert-butyl carbinyl l-menthyl carbonate ((S)-12), which was obtained in pure form by a single recrystallization; hydrolysis produced 99% pure S-(-)-1-isoquinolyl tert-butyl carbinol [(S)-16]. Reactions of the anions of diastereomeric Reissert compounds, either as mixtures or pure single species, with aromatic aldehydes and alkyl halides proceeded with at best modest selectivity (diastereomeric ratios up to 66:34 and 72:28, respectively). Therefore, it is concluded that the Reissert anions are either planar or rapidly inverting tetrahedral structures.  相似文献   

16.
The self-assembled monolayer structure of the products of elaidic acid iodination (the racemic mixture of 9,10-(9S,10R)-diiodooctadecanoic acid and 9,10-(9R,10S)-diiodooctadecanoic acid) and the products of oleic acid iodination (the racemic mixture of 9,10-(9R,10R)-diiodooctadecanoic acid and 9,10-(9S,10S)-diiodooctadecanoic acid) are studied by high-resolution scanning tunneling microscopy. For the iodination products of elaidic acid, the separation of enantiomers into distinct chiral domains during the formation of the 2-D crystal on the highly ordered pyrolytic graphite (HOPG) surface is not observed. Instead, within the diiodooctadecanoic acid SAM, each row of molecules is composed of opposite racemates. The two opposite racemates pack alternately inside a row, using different faces to adsorb on the surface. The unit cell is composed of a pair of opposite racemates, forming a heterochiral structure. For the iodination products of oleic acid, the racemic mixture is observed to exhibit quasi-phase separation during the formation of the 2-D crystal on the HOPG surface. Each row is composed of homochiral acid molecules, either the 9,10-(9R,10R)-diiodooctadecanoic acid (R) or the 9,10-(9S,10S)-diiodooctadecanoic acid (S). The R row and the S row pack alternately, with a unit cell composed of four molecules. Two of the molecules in the unit cell are the 9,10-(9R,10R)-diiodooctadecanoic acid (R) molecules; two are the 9,10-(9S,10S)-diiodooctadecanoic acid (S) molecules. In the unit cell, the two molecules that have the same chirality pack antiparallel inside the homochiral row, using different faces to adsorb on the surface. These results suggest that several different types of chiral assembly are possible. Enantiomers with opposite chirality exhibit many chiral assembly patterns, forming heterochiral structures on the surface in addition to separation to form macroscopic chiral domains. By using different conformations, similar enantiomers with opposite chirality will display many chiral assembly patterns to form heterochiral structures on the surface.  相似文献   

17.
Reactions between the antitumor agent titanocene dichloride (Cp2TiCl2) and the hexadentate ligand N,N'-ethylenebis-(o-hydroxyphenylglycine) (H4ehpg) have been investigated in aqueous solution and the solid state. The racemic ligands give crystals of the monomer [Ti(ehpg)(H2O)] x (11/3)H2O (1), while the meso ligand gives the oxo-bridged dimer [[Ti(Hehpg)(H2O)]2O] x 13H2O (2). Complex 1 crystallizes in the monoclinic space group C2/c with a = 24.149(4) A, b = 14.143(3) A, c = 19.487(3) A, beta = 105.371(13) degrees, V = 6417.7(19) A3, Z = 12, and R(F) = 0.0499 for 4,428 independent reflections having I > 2sigma(I), and contains seven-coordinate pentagonal-bipyramidal TiIV with two axial phenolate ligands (Ti-O, 1.869(2) A). The pentagonal plane contains the two N-atoms at 2.210(2) A, two carboxylate O-atoms at 2.061(2) A, and a water molecule (Ti-OH2, 2.091(3) A). Complex 2 crystallizes as an oxygen-bridged dimer in the triclinic space group P-1 with a = 12.521(6) A, b = 14.085(7) A, c = 16.635(8) A, alpha = 80.93(2) degrees beta = 69.23(2) degrees, gamma = 64.33(2) degrees , V = 2472(2) A3, Z = 4, and R(F) = 0.0580 for 5956 independent reflections having I > 2sigma(I). Each seven-coordinate, pentagonal-bipyramidal TiIV has a bridging oxide and a phenolate as axial ligands. The pentagonal plane donors are H2O, two carboxylate O-atoms, and two NH groups, which form H-bonds to O-atoms both in the same half-molecule (O...N, 2.93-3.13 A) and in the other half-molecule (O...N, 2.73-2.75 A); the second phenoxyl group of each Hehpg ligand is protonated and not coordinated to TiIV, but H-bonds to a nearby amine proton (O...N, 2.73-2.75 A) from the same ligand and to a nearby H2O (O...O, 2.68 A). In contrast to all previously reported crystalline metal-EHPG complexes containing racemic ligands, in which the N(S,S)C(R,R) or N(R,R)C(S,S) form is present, complex 1 unexpectedly contains the N(S,S)C(S,S) and N(R,R)C(R,R) forms. This is attributed to the presence of ring strain in seven-coordinate TiIV complexes. Moreover, the rac ligands selectively form crystals of monomeric 1, while the meso ligand selectively forms crystals of the dimer 2 (N(R,R)C(R,S) or N(S,S)C(S,R)). Complexes 1 and 2 exhibit phenolate-to-TiIV charge-transfer bands near 387 nm, and 2D NMR studies indicate that the structures of 1 and 2 in solution are similar to those in the solid state. Complex 1 is stable over the pH range 1.0-7.0, while 2 is stable only between pH 2.5 and pH 5.5. Cp2TiCl2 reacts with EHPG at pH* 7.0 to give complex 1 with a t 1/2 of ca. 50 min (298 K), but complex 2 was not formed at this pH* value. At pH* 3.7, the reaction is very slow: 1 forms with a half-life of ca. 2.5 d, and 2 after ca. 1 week at ambient temperature. The relevance of these data to the possible role of serum transferrin as a mediator for the delivery of TiIV to tumor cells is discussed.  相似文献   

18.
The configuration at phosphorus in cyclic (S)-HPMPC (1, cidofovir) and (S)-HPMPA (2) phenyl ester (5 and 6, respectively) diastereomers ((R(p))-5, (R(p))-6, (S(p))-6) was determined by X-ray crystallography and correlated to their (1)H and (31)P NMR spectra in solution. (R(p))-5 and (R(p))-6 have chair conformations with the nucleobase substituent equatorial and the P-OPh axial. Perhaps surprisingly, (S(p))-6 is (a, a) in the crystal and exists largely as an equilibrium of (a, a)/(e, e) conformers in chloroform or acetonitrile.  相似文献   

19.
We report that the cis/trans ratio of the proline peptide bond can be strongly influenced by the chirality of the acyl residue preceding proline. Acyl moieties derived from (2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) in acyl-Pro molecules influence isomerization of the proline peptide bond constraining the omega dihedral angle to the trans orientation. Structures of benzyl (2S)-1-([(2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl)-2-pyrrolidinecarboxylate (3) derived from 2D (1)H NMR conformational analysis and crystallographic data exhibit only the trans conformation of proline peptide bond. On the other hand the diastereomer 4, which contains an (R) acyl moiety, exhibits two sets of signals in (1)H NMR spectra. The signals were assigned to trans (72%) and cis (28%) conformers. Crystallographic analysis of 4 showed that only the cis conformation is present in the crystalline state. The (1)H NMR chemical shift pattern of three sets of signals observed in 2 was observed also in benzyl (2S)-1-[(2R/S)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate. (R)-Carboxylic acid 5, after coupling with (S)-ProOBn, yielded benzyl (2S)-1-[(2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate (6), which in DMSO-d(6) exhibited only the trans conformation of the proline peptide bond. These results suggest that in these particular cases acyl-Pro peptide bond isomerization is strongly influenced by the stereochemistry of the acyl residue preceding proline. (2S)-2,6-Dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) are promising chiral peptidomimetic building blocks that can be used as acyl moieties to force the proline peptide bond into the trans conformation in a variety of acyl-Pro molecules.  相似文献   

20.
Three chiral diamines were synthesised and evaluated as sparteine surrogates in the lithiation-substitution of N-(tert-butoxycarbonyl)pyrrolidine. The synthesis and attempted resolution of sparteine-like diamines [(1S*,2R*,8R*)-10-methyl-6,10-diazatricyclo[6.3.1.0(2,6)]dodecane and (1S*,2R*,9R*)-11-methyl-7,11-diazatricyclo[7.3.1.0(2,7)]tridecane] (via inclusion complex formation) are reported. Unfortunately, it was only possible to resolve the diazatricyclo[7.3.1.0(2,7)]tridecane compound. An alternative route to (1R,2S,9S)-11-methyl-7,11-diazatricyclo[7.3.1.0(2,7)]tridecane starting from the natural product, (-)-cytisine, is described. This simple three-step route furnished gram-quantities of a (+)-sparteine surrogate. X-Ray crystallography of an intermediate in the route, (1R,5S,12S)-3-methoxycarbonyldecahydro-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one, enabled the stereochemistry of all of the tricyclic diamines described in this paper to be unequivocally established. Two other diamines, starting from (S)-proline and resolved 2-piperidine ethanol, were prepared using standard methods. These diamines lacked the bispidine framework of (-)-sparteine and were found to impart vastly inferior enantioselectivity. It was concluded that, for the asymmetric lithiation substitution of N-Boc pyrrolidine, a rigid bispidine framework and only three of the four rings of (-)-sparteine are needed for high enantioselectivity. Furthermore, it is shown that diamine (1R,2S,9S)-11-methyl-7,11-diazatricyclo[7.3.1.0(2,7)]tridecane is the first successful (+)-sparteine surrogate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号