首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fe-fullerene/TiO(2) composite catalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The catalytic activities were evaluated by the catalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/TiO(2) composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/TiO(2) composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/TiO(2) composite. The degradation of MB solution by ultrasonic irradiation in the presence of Fe-fullerene/TiO(2) compounds was investigated in complete darkness. With the increase in the amount of Fe, the degradation rate of methylene blue solution also increased.  相似文献   

2.
采用溶胶-凝胶法在聚乙烯吡咯烷酮(PVP)修饰的碳纳米管表面均匀沉积纳米级二氧化钛粒子制得复合光催化剂。采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外-可见吸收光谱仪(UV-Vis)和X射线光电子能谱仪(XPS)等手段对复合光催化剂进行表征。结果表明,二氧化钛粒子是呈球形、团聚,随机沉积在未修饰碳纳米管任意表面,甚至部分碳纳米管表面是完全裸露的。经PVP修饰后的碳纳米管,二氧化钛纳米粒子均匀沉积在碳纳米管表面,二氧化钛为纯锐钛矿晶体结构,没有金红石和板钛矿相。表面修饰碳纳米管/二氧化钛复合光催化剂在紫外光照射下降解亚甲基蓝,相比纯的二氧化钛和碳纳米管/二氧化钛复合光催化剂,具有非常高的催化活性。  相似文献   

3.
CuO based catalysts dispersed on silica-alumina supports at low (0.56 wt.%) and high (13 wt.%) Al(2)O(3) content were prepared by adsorption method with or without ultrasound treatment. The catalysts obtained were studied in their bulk (atomic absorption, X-ray diffraction, temperature programmed reduction) and surface (N(2) adsorption and X-ray photoelectron spectroscopy) properties. Significant differences between the series of catalysts prepared over the two supports in terms of size of the CuO aggregates and of their redox properties were evidenced. All the catalysts were tested in the selective catalytic reduction of NO(x) using C(2)H(4) as reducing species (HC-SCR process) in highly oxidant atmosphere. The CuO-catalysts prepared using ultrasounds were the most active. Moreover, they displayed a peculiar activity being able to activate NO both by reducing it to N(2), in larger extent, and by oxidizing it to NO(2).  相似文献   

4.
A series of dispersed CuO catalysts supported on modified silica supports with Al2O3 (SA), TiO2 (ST), and ZrO2 (SZ) were prepared optimising the adsorption method of copper deposition assisted by ultrasound treatment, already reported in a previous paper (S. Bennici, A. Gervasini, V. Ragaini, Ultrason. Sonochem. 10 (2003) 61). The obtained catalysts were characterized in their bulk (atomic absorption, X-ray diffraction, temperature programmed reduction) and surface (N2 adsorption, X-ray photoelectron spectroscopy, scanning electron microscopy) properties. The morphology of the finished materials was not deeply modified compared with that of the relevant supports. The employed complemented techniques evidenced a well dispersed CuO phase with a copper-support interaction on the most acidic supports (SA and SZ). The catalyst performances were studied in the reaction of selective catalytic reduction of NOx with ethene in oxidizing atmosphere in a flow apparatus under variable times (0.360-0.072 s) and temperatures (200-450 degrees C). The catalysts prepared on the most acidic supports (SA and SZ) were the most active and selective towards N2 formation. They showed a particular interesting activity in the reaction of NO2 reduction besides that of NO reduction.  相似文献   

5.
Copper-chromite oxide and TiO2-supported copper-chromite oxide catalysts are prepared by various methods. They are characterized with ICP, BET, XRD, XPS, SEM, and TEM, etc. Their catalytic performance for liquid phase hydrogenation of furfural to furfuryl alcohol is also valuated. The catalysts prepared by ultrasound exhibit good performance. Catalytic activity of TiO2-supported catalysts is higher than that of catalyst without TiO2, notwithstanding they are all prepared by ultrasound. It is worth stressing that after reduced the TiO2-supported catalysts, which are X-ray amorphous, display good performance at 140 degrees C, while the catalysts without TiO2 show no activity under the same condition. Obtained results indicate that the catalytic performance of catalysts depends upon the amount of reducible copper ions and the activity decay is related to the loss of metal elements on the surface of catalyst.  相似文献   

6.
TiO2光催化剂的光谱研究   总被引:13,自引:0,他引:13  
采用sol-gel法制备了纳米TiO2光催化剂,运用FTIR,FT-Ranam,DSR等光谱技术对催化剂进行了表征,以光催化解油酸作为模型反应考察光催化活性。实验结果表明,催化剂的烧结温度对催化剂的晶相结构、半导体能带结构、光吸收性能及光催化活性均产生显著的影响,当烧结温度为400℃时,TiO2光催化剂具有最好的表观吸光度,最大的吸收带边,以及最佳的光催化活性。  相似文献   

7.
In this study a hot filament chemical vapour deposition (HFCVD) technique was used to prepare Fe-Cr films on Si substrate as catalysts for thermal CVD (TCVD) growing of carbon nanotubes (CNTs) from liquid petroleum gas (LPG) at 800 °C. To characterize the catalysts or CNTs, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy were used. The XPS spectra obtained at different stages of Ar+ sputtering revealed that in the depth of catalyst layers, the relative Fe-Cr concentrations are higher than the top-surface. SEM images of samples after TCVD indicate a significant CNT growing at the backside of catalyst layer compared with its top which is accompanied with morphological changes on catalyst layer such as formation of cone-shape structures, rippling, cracking and rolling of the layer. These observations were attributed to the more catalytic activity of the sub-surface beside the poor activity of the top-surface as well as the presence of individual active islands over the surface of the catalyst thin film.  相似文献   

8.
Ordered hexagonal arrangement MCM-41 mesoporous molecular sieves were synthesized by the traditional hydrothermal method, and Fe-loaded MCM-41 mesoporous molecular sieves (Fe/MCM-41) were prepared by the wet impregnation method. Their mesoporous structures were testified by X-ray diffraction (XRD) and the N2 physical adsorption technique. Carbon nanotubes (CNTs) were synthesized by the chemical vapor deposition (CVD) method via the pyrolysis of ethanol at atmospheric pressure using Fe/MCM-41 as a catalytic template. The effect of different reaction temperatures ranging from 600 to 800 °C on the formation of CNTs was investigated. The resulting carbon materials were characterized by various physicochemical techniques such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results show that multi-wall carbon nanotubes (MWCNTs) with an internal diameter of ca. 7.7 nm and an external diameter of ca. 16.9 nm were successfully obtained by the pyrolysis of ethanol at 800 °C utilizing Fe/MCM-41 as a catalytic template.  相似文献   

9.
A hot filament chemical vapor deposition (HFCVD) method was used to prepare Fe-Cr thin film on Si substrate. The produced layers were used as catalysts for growing carbon nanotubes (CNTs) from liquid petroleum gas (LPG) at 825 °C by thermal CVD (TCVD) method. To characterize the obtained catalysts or CNTs, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Raman spectroscopy were used. CNTs were grown on HFCVD derived Fe-Cr catalyst with the LPG as carbon source successfully. It was found that an annealing process on catalysts enhances the surface concentration of Cr atoms and reduces the sizes of catalyst particles. The grown CNTs on annealed sample were morphologically denser with smaller diameters compared to the as deposited one. In addition, the effect of filament temperature on CNTs was investigated. By increasing the filament temperature from 850 to 1050 °C the surface density and diameters of CNTs were improved.  相似文献   

10.
本文以TiC为前驱体和掺杂源,采用一步水热法合成了具有可见光吸收的C自掺杂金红石相TiO2纳米棒.样品的结构、形貌、化学态和光学性质等可通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)以及紫外可见分光光度计(UV-vis)来表征.所合成的样品具有较强的光催化活性,可通过在可见光照射下降解有机染料罗丹明B(RhB)来验证.C自掺杂TiO2所呈现的较强光催化活性是由于其具有小的能带间隙(2.74 eV)、大的比表面积和高的电子-空穴对分离率.  相似文献   

11.
本文以TiC为前驱体和掺杂源,采用一步水热法合成了具有可见光吸收的C自掺杂金红石相TiO_2纳米棒.样品的结构、形貌、化学态和光学性质等可通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)以及紫外可见分光光度计(UV-vis)来表征.所合成的样品具有较强的光催化活性,可通过在可见光照射下降解有机染料罗丹明B(RhB)来验证.C自掺杂TiO_2所呈现的较强光催化活性是由于其具有小的能带间隙(2.74 eV)、大的比表面积和高的电子-空穴对分离率.  相似文献   

12.
本文以TiC为前驱体和掺杂源,采用一步水热法合成了具有可见光吸收的C自掺杂金红石相TiO2纳米棒.样品的结构、形貌、化学态和光学性质等可通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)以及紫外可见分光光度计(UV-vis)来表征.所合成的样品具有较强的光催化活性,可通过在可见光照射下降解有机染料罗丹明B(RhB)来验证.C自掺杂TiO2所呈现的较强光催化活性是由于其具有小的能带间隙(2.74 eV)、大的比表面积和高的电子-空穴对分离率.  相似文献   

13.
Nano-size TiO2 photocatalysts were prepared by sol-gel and ultrasonic-assisted sol-gel methods using two different sources of ultrasonicator, i.e., a bath type and tip type. The physicochemical characteristics of the catalysts were investigated by BET, XRD and TEM analyses and the photocatalytic properties of the TiO2 catalysts prepared by three different methods were compared. The intrinsic and extrinsic properties of TiO2, such as the particle size, surface area, pore-volume, pore-diameter, crystallinity as well as anatase, rutile and brookite phase ratios, could be controlled by the ultrasonic-assisted sol-gel method. During this preparation method, the effect of such important operating variables as the ultrasonic irradiation time, power density, the ultrasonic sources (bath-type and tip-type), magnetic stirring during synthesis, initial temperatures and size of the reactors are discussed here. It was found that each of the parameters played a significant role in controlling the properties of the TiO2 nano-particles. Among the three different methods, TiO2 photocatalysts prepared by ultrasonic (tip-US) assisted sol-gel possessed the smallest particle size, highest surface area and highest pore-volume than the catalysts prepared by the other two methods. 4-Chlorophenol was used as a pollutant to observe the photocatalytic degradation ability of the prepared photocatalysts and the TiO2 catalysts prepared by the bath-US ultrasonic-assisted sol-gel method were shown to be the most highly active. This is due to their high surface area and high pore-diameter. This study clearly demonstrates the importance and advantages of ultrasonication in the modification and improvement of the photocatalytic properties of mesoporous nano-size TiO2 particles.  相似文献   

14.
Fine particles of rutile TiO2 supporting nanosized particles of Pt were prepared by a simultaneous in situ sonochemical reduction and deposition method using a standing wave sonochemical reactor (SWSR). The mean diameter of sonochemically obtained Pt particles are of 2 nm. Following this sonochemical technique, rutile TiO2 was also deposited with different weight percentages of Pt. Catalytic function of the prepared composite catalysts were tested by the oxidation of CO to CO2. From the catalytic activity results, it has been found out that the catalysts prepared by the sonochemical method exhibited higher catalytic activity for CO oxidation, probably attributed to the higher Pt particle distribution achieved under sonication. Transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and diffuse reflectance spectroscopy (DRS) were employed to characterize the resulting material.  相似文献   

15.
A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation.The catalyst structures were characterized by X-ray diffraction,N2 adsorption-desorption,transmission electron microscopy and H2-TPD,and its catalytic performance toward the synthesis of higher alcohols from syngas was investigated.The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs.The uniform mesoporous structure of CNTs increased the diffusion rate of reactants and products,thus promoting the reaction conversion.Furthermore,the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group,which served as the key intermediate for the alcohol formation and carbon chain growth.Benefiting from these characteristics,the CNTs supported Mo-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as compared to the unsupported catalyst and activated carbon supported catalyst.  相似文献   

16.
Yan Li 《Applied Surface Science》2008,254(9):2609-2614
The Pt-Co catalysts supported on carbon nanotubes (CNTs) have been prepared by wet impregnation and the selective hydrogenation of cinnamaldehyde (CMA) to the corresponding cinnamyl alcohol (CMO) over the catalysts has been studied in ethanol at different reaction conditions. The results show that Pt-0.17 wt%Co/CNTs catalyst exhibits the highest activity and selectivity at a reaction temperature of 60 °C under a pressure of around 2.5 MPa, and 92.4% for the conversion of CMA and 93.6% for the selectivity of CMA to CMO, respectively. The selective hydrogenation for the CO double bond in CMA would be improved as increasing the H2 pressure, and the selective hydrogenation for the CC double bond in CMA is enhanced as increasing the reaction temperature. In addition, these catalysts have also been characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR) and H2-temperature programmed desorption (H2-TPD) techniques. The results show that Pt particles are dispersed more homogeneously on the outer surface of the nanotubes, while the strong interaction between Pt and Co would improve the increasing of activated hydrogen number because of the hydrogen spillover from reduced Pt0 onto CNTs and increase the catalytic activity and selectivity of CMA to CMO.  相似文献   

17.
Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.  相似文献   

18.
对石墨氧化物经过加热处理和化学处理后担载金溶胶从而制备得到不同的Au/GO催化剂.利用X-射线光电子能谱,热脱附谱和拉曼光谱对催化剂的表面物种和结构进行了表征.结果表明,热处理和化学处理对Au/GO催化剂表面含氧物种的浓度、种类以及载体的晶体结构具有显著影响,进而导致催化剂在以O2为氧源的液相苯甲醇选择氧化反应中的催化活性呈现明显差异.与载体表面含氧物种的浓度和种类这一因素相比,载体结构的有序程度对于Au/GO催化剂的催化活性起到更为重要的决定作用.  相似文献   

19.
Mesoporous nanocrystalline NiO-Al2O3 powders with high surface area were synthesized via ultrasound assisted co-precipitation method and the potential of the selected samples as catalyst was investigated in dry reforming reaction for preparation of synthesis gas. The prepared samples were characterized by N2 adsorption (BET), X-ray diffraction (XRD), Temperature programmed reduction and oxidation (TPR, TPO) and scanning electron microscopy (SEM) techniques. The effects of pH, power of ultrasound irradiation, aging time and calcination temperature on the textural properties of the catalysts were studied. The sample prepared under specified conditions (pH10, 70 W, without aging time and calcined at 600 °C) exhibited the highest surface area (249.7 m2 g−1). This catalyst was calcined at different temperature and employed in dry reforming of methane and the catalytic results were compared with those obtained over the catalysts prepared by impregnation and co-precipitation methods. The results showed that the catalyst prepared by ultrasound assisted co-precipitation method exhibited higher activity and stability with lower degree of carbon formation compared to catalysts prepared by co-precipitation and impregnation methods.  相似文献   

20.
采用时间分辨红外光谱直接观测了甲醇在Pt/TiO2上光催化反应制氢过程中光生电子还原氢离子生成氢气的反应过程.结果表明Pt的担载量存在一最佳值,使得该催化剂中光生电子的反应速度最快.当Pt担载量相同时,Pt/TiO2催化剂中光生电子参与产氢反应的速度随样品还原温度的不同而明显变化.可能的原因是较高温度下氢气还原的Pt/TiO2催化剂中Pt粒子占据了TiO2表面的一些能够解离吸附甲醇的活性位置,而对于较低温度下氢气还原的Pt/TiO2催化剂,这种占据作用很不明显.实验中还发现瞬态动力学研究中光生电子衰减较快  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号