首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rare earth Ce-incorporated MCM-41 mesoporous molecular sieves (CeMCM-41) were synthesized via a direct and nonhydrothermal method at room temperature from sodium silicate and ammonium cerium (IV) nitrate as raw materials. Cetyltrimethyl ammonium bromide (CTAB) was used as a template. The resultant samples were characterized by means of powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance ultraviolet–visible spectroscopy (UV–vis) and N2 physical adsorption, respectively. The effect of the Si/Ce molar ratio on the crystalline structure and textural properties of CeMCM-41 was also investigated. The experimental results show that ordered CeMCM-41 mesoporous molecular sieves were successfully synthesized at room temperature and the resultant mesoporous materials have specific surface areas in the range of 594–1369 m2/g and average pore sizes in the range of ca. 2.5–2.8 nm. It has been found that the structural properties are strongly related to the amounts of cerium incorporation. When the cerium content increased in the samples, the intensity of the peak (1 0 0) was gradually reduced, and the surface area and structural regularity were diminished.  相似文献   

2.
The catalytic pyrolysis of waste plastics with iron-based catalyst can produce H2 rich gas, liquid oil and carbon nanotube (CNTs) together. While the catalytic pyrolysis mechanism is still unclear, in this study, the catalytic pyrolysis of polypropylene (PP) was explored in depth, and the influence of catalyst and temperature was distinguished. The results indicated that a lower temperature led to the generation of waxes, while a higher temperature promoted the formation of aromatic hydrocarbons when plastic pyrolysis was performed without a catalyst. In addition, a large number of carbon deposits, mainly in the form of spheres, were collected when the temperature was over 800 ℃. These carbon spheres originated from the agglomeration of aromatic hydrocarbons. Once catalysts were introduced, a large amount of liquid oil was transferred into carbon deposits at both lower and higher catalytic temperatures, simultaneously, leading to more light gases releasing, like hydrogen. At a lower temperature (≤ 800 ℃), it was mainly CNTs while carbon spheres are the main solid product at higher temperatures (> 800 ℃). In addition, two different mechanisms of CNTs formation were also concluded that the base-growth model dominated the of generation CNTs at 600 °C whereas the CNTs followed the tip-growth model at 800 ℃. The results show that the optimized temperature for the catalytic process should be around 800 o℃ where approximately 35 mmol/gplastic hydrogen, 50% hydrogen efficiency and over 320 mg/gplastic carbon nanotubes (CNTs) were obtained.  相似文献   

3.
Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal were synthesized by using cetyltrimethyl ammonium bromide as a template and by a novel microwave irradiation method. These samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption. The experimental results show that Co (Ni or Cu)-MCM-41 mesoporous molecular sieves were successfully synthesized. When the as-synthesized samples were calcined at 550 °C for 10 h, the template was effectively removed. Under microwave irradiation condition, Co-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 745.7-1188.8 m2/g and average pore sizes in a range of 2.46-2.75 nm; Ni-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 625.8-1161.3 m2/g and average pore sizes of ca. 2.7 nm; Cu-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 601.6-1142.9 m2/g and average pore sizes in a range of 2.46-2.76 nm. On the other hand, with increasing the introduced metal amount, the specific surface area and pore volume of the synthesized Co (Ni or Cu)-MCM-41 mesoporous molecular sieves became small, and the mesoporous ordering of the samples became poor. Under the comparable synthesis conditions, the synthesized Co-MCM-41 mesoporous molecular sieve has a bigger specific surface area and a more uniform pore distribution as compared with the synthesized Ni-MCM-41and Cu-MCM-41 mesoporous molecular sieves.  相似文献   

4.
Highly ordered mesoporous material MCM-41 was synthesized from tetraethylorthosilicate (TEOS) as Si source and cetyltrimethylammonium bromide (CTAB) as template. Well-dispersed NiO nanoparticles were introduced into the highly ordered mesoporous MCM-41 by chemical precipitation method to prepare the highly ordered mesoporous NiO/MCM-41 composite. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), and nitrogen adsorption–desorption measurement were used to examine the morphology and the microstructure of the obtained composite. The morphological study clearly revealed that the synthesized NiO/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 435.9 m2 g−1. A possible formation mechanism is preliminary proposed for the formation of the nanostructure. The adsorption performance of NiO/MCM-41 composite as an adsorbent was further demonstrated in the removal azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB) and rhodaming B (RB) under visible light irradiation and dark, respectively. The kinetics and mechanism of removal methylene blue were studied. The results show that NiO/MCM-41 composite has a good removal capacity for organic pollutant MB from the wastewater under the room temperature. Compared with MCM-41 and NiO nanoparticles, 54.2% and 100% higher removal rate were obtained by the NiO/MCM-41 composite.  相似文献   

5.
A new pyrolysis technique has been developed for the synthesis of multi-walled carbon nanotubes (MWCNTs). In this simple method diethyl ether and nickelocene is pyrolysized in a reaction quartz tube without using carrier gas. The samples are prepared at pyrolysis temperatures of 650 and 950 °C and the effect of temperature on the tube morphology investigated. Purification has been done following the standard oxidation and acid bath treatment. The as-synthesized and purified nanotubes have been characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and micro-Raman spectroscopy. The technique has great advantages such as low cost and easy operation for the production of CNTs.  相似文献   

6.
Multiwall carbon nanotubes (MWNTs) filled with Fe nanoparticles (NPs) have been synthesized by thermal chemical vapor deposition of ferrocene alone as the precursor. The MWNTs were grown at different temperatures: 980 and 800 °C. Characterization of as-prepared MWNTs was done by scanning and transmission electron microscopy, and X-ray diffraction. The transmission electron microscopy study revealed that Fe NPs encapsulated in MWNTs grown at 980 and 800 °C are spherical and rod shaped, respectively. Room-temperature vibrating sample magnetometer studies were done on the two samples up to a field of 1 T. The magnetization versus magnetic field loop reveals that the saturation magnetization for the two samples varies considerably, almost by a factor of 4.6. This indicates that Fe is present in different amounts in the MWNTs grown at the two different temperatures.  相似文献   

7.
Using cetyltrimethyl ammonium bromide (CTAB) as the template and sodium silicate as the silicon source, the MCM-41 mesoporous molecular sieves with Eu incorporated in the framework were synthesized under microwave irradiation condition and the influence of the Si/Eu molar ratio on the crystalline structure, textural properties and the long-range ordering of the resulting sample was investigated by various physicochemical techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis), thermal gravimetric-differential scanning calorimeter (TG-DSC) and N2 physical adsorption. The results of N2 adsorption and XRD reveal that the synthesized sample has the ordered hexagonal mesoporous structure. UV-vis spectra provide the strong evidences that most of europium ions were incorporated into the framework of the MCM-41 sample. The crystalline structure, textural properties and mesoporous ordering of the resultant mesoporous materials are related to the amount of europium incorporation. Small amount europium incorporated into the silica-based MCM-41 does not strongly modify the structure of mesoporous molecular sieve. An increase of the Eu content in sample led to reduction of the specific surface area and the deterioration of the long-range ordering.  相似文献   

8.
Well-aligned carbon nanotubes (CNTs) of high quality were synthesized by pyrolysis of phenolic resin at 800 °C in anodic alumina oxide (AAO) pores under argon protection. The innocuous source materials and safe operational conditions permit this method to synthesize well-aligned CNTs in large-scale and low cost. The formation mechanism of the synthesized CNTs is also proposed in this work by a series of visual sketches and is proved with obvious evidence. Firstly, phenolic resin nanotubes form in the template pores through the evaporation of solvent. Heat treatment then transfers these tubes into CNTs.  相似文献   

9.
Zr-containing mesoporous molecular sieves were synthesized by hydrothermal method using cetyltrimethyl ammonium bromide as a template and sodium silicate and zirconium sulfate as raw materials. The structure and morphology of the synthesized samples were characterized via various physicochemical methods, including X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, solid state nuclear magnetic resonance (29Si MAS-NMR) techniques, thermal gravimetric-differential scanning calorimeter (TG-DSC) and N2 physical adsorption, respectively. The effect of the different initial ZrO2:SiO2 molar ratio, the different thermal treatment temperature and the different hydrothermal treatment time on textural property was investigated. The experimental results reveal that the as synthesized samples possess a typical mesoporous structure of MCM-41. On the other hand, the specific surface area and pore volume of the synthesized Zr-MCM-41 mesoporous molecular sieve decrease with the increase of the amount of zirconium incorporated in the starting material, the rise of thermal treatment temperature and the prolonging of hydrothermal treatment time, the mesoporous ordering becomes poor. Also, when the molar ratio of ZrO2:SiO2 in the starting material is 0.1, the mesoporous structure of the Zr-MCM-41 mesoporous molecular sieve still retains after calcination at 750 °C for 3 h or hydrothermal treatment at 100 °C for 6 d, and have specific surface areas of 423.9 and 563.9 m2/g, respectively.  相似文献   

10.
Carbon nanotubes (CNTs) with 40–100 nm in diameter and tens of micrometers in length were prepared via catalytic pyrolysis of phenol resin in Ar at 673–1273 K using ferric nitrate as a catalyst precursor. Structure and morphology of pyrolyzed resin were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Ferric nitrate was transformed to Fe3O4 at 673 K, and to metallic Fe and FexC carbide at 873–1273 K. The optimal weight ratio of Fe catalyst to phenol resin for growing CNTs was 1.00 wt%, and the optimal temperature was 1073 K. In addition, use of a high pressure increased the yield of CNTs. Density functional theory (DFT) calculations suggest that Fe catalysts facilitate the CNTs growth by increasing the bond length and weakening the bond strength in C2H4 via donating electrons to the C atoms in it.  相似文献   

11.
A synthetic route was developed for a novel hexagonal mesoporous silica that has remarkably wide channel diameters and thick walls. The procedure involved the acid-catalyzed hydrolysis of tetraethylorthosilicate in a water/ethanol/isopropoanol solvent mixture while employing 1-hexadecylamine as a templating agent and mesitylene as an auxiliary agent. After removal of the template by either extraction with ethanolic hydrochloric acid or by calcination at 550 °C, the resulting mesoporous materials had surface areas of 1283 and 1211 m2/g. The channel diameters were found to be 47.2-51.1 Å, while the wall thicknesses were 20.9-21.1 Å. X-ray powder diffraction demonstrated that the novel mesoporous silica belonged to the MCM-41 structural family. Notably, they displayed higher thermal and hydrothermal stabilities, and have higher surface areas than conventionally prepared MCM-41 silica. The thickest channel walls (21.1 Å) can withstand calcination to nearly 850 °C with minimal structural damage. The calcined sample was more resistant to hydrothermal treatment in boiling water than was the solvent-extracted product but both materials showed minimal change after 25 h of hydrothermal treatment.  相似文献   

12.
Iron, cobalt and a mixture of iron and cobalt incorporated mesoporous MCM-41 molecular sieves were synthesised by hydrothermal method and used to investigate the rules governing their nanotube producing activity. The catalysts were characterised by XRD and N2 sorption studies. The effect of the catalysts has been investigated for the production of carbon nanotubes at an optimised temperature 750 °C with flow rate of N2 and C2H2 is 140 and 60 ml/min, respectively for a reaction time 10 min. Fe-Co-MCM-41 catalyst was selective for carbon nanotubes with low amount of amorphous carbon with increase in single-walled carbon nanotubes (SWNTs) yield at 750 °C. Formation of nanotubes was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Transmission electron microscope and Raman spectrum was used to follow the quality and nature of carbon nanotubes formed and the graphitic layers and disordered band, which shows the clear evidence for the formation of SWNTs, respectively. The result propose that the diameter of the nanotubes in the range of 0.78-1.35 nm. Using our optimised conditions for this system, Fe-Co-MCM-41 showed the best results for selective SWNTs with high yield when compared with Fe-MCM-41 and Co-MCM-41.  相似文献   

13.
Composite polymer electrolyte films consisting of polyethylene oxide (PEO), LiAsF6 and mesoporous silica (MCM-41) with fixed PEO/LiAsF6 = 90/10 but different weight percent ratios of MCM-41 were prepared using the solution casting method. The polymer electrolyte films were characterized using XRD, DSC, SEM and electrical impedance spectroscopy. In corporation of MCM-41 in a (PEO + LiAsF6) polymer electrolyte facilitates salt dissociation, enhances ion conductivity, and improves miscibility between organic and inorganic moieties. The scanning electron microscopy (SEM) photographs indicates the electrolytes are miscible and homogeneous up to 10 wt.% of MCM-41, and an optimized conductivity is found at this composition (10 wt.%). However, at higher weight ratios (>10 wt.%), the Li/MCM-41-rich domain developed, and the conductivity decreased with increasing mesoporous material. The electrochemical performance of fabricated electrochemical cells of configuration Li/(PEO + LiAsF6 + MCM-41)/(MoO3 + C + PTFE) were investigated.  相似文献   

14.
ZSM-5/MCM-41 micro/mesoporous composite materials were synthesized by the hydrothermal technique with alkali-treated ZSM-5 zeolite as source of silica and aluminum and characterized by various physico-chemical techniques such as X-ray diffraction (XRD), nitrogen sorption at 77 K, transmission electronic microscopy (TEM), FTIR spectroscopy and NH3 temperature programmed desorption (TPD) techniques. The effect of concentration of CTAB in the synthesis of these solids has been investigated, the mesopore volume, surface area and surface acidity decrease with increasing the concentration of CTAB. Increasing the CTAB concentration causes the recrystallization of zeolite ZSM-5 and it disadvantage the formation of mesoporous materials MCM-41. The catalytic activity of ZSM-5/MCM-41 materials has been evaluated in the Friedel–Crafts acylation of anisole with benzoyl chloride as alkylating agent. The results revealed the reaction to be influenced by surface area, pore volume and surface acidity.  相似文献   

15.
Three mesoporous molecular sieves loaded silicotungstic acids, named HSiW/SBA-15, HSiW/MCM-41, HSiW/MCM-48, were prepared and characterised by XRD, FT-IR, TEM and SEM. The catalytic performance of the prepared materials for the Baeyer-Villiger oxidation of cyclic ketones was carried out in the presence of 30%H2O2 under mild conditions. These loading materials were proved to be efficient and reusable catalysts, they all exhibited excellent catalytic performance for the Baeyer-Villiger oxidation of cyclic ketones with 30% H2O2 as oxidant. Many cyclic ketones were efficiently converted to the corresponding lactones with up to 90% conversions and high selectivities under the optimum reaction conditions.

Cyclic ketones were efficiently oxidised by mesoporous materials sopported silicotungstic acid to the corresponding lactones with 30%H2O2 as oxidant. All of the catalysts showed promising recyclability in the reactions.  相似文献   

16.
We report a comparative study on diameter distribution of single-walled carbon nanotubes (SWNTs) grown using nanoporous templates having different pore sizes, namely, zeolite-L, ZSM-5, and MCM-41. The change in the tube diameter based on catalytic film thickness and growth temperature was systematically investigated. We prepared very thin Fe catalyst films with nominal thicknesses of 0.5, 0.7, 1, and 2 Å, and the growth temperature was varied from 850 to 925 °C. We found that the SWNT mean diameter and size distribution width decreased with decreasing catalyst film thickness, growth temperature, and pore sizes of the templates. In addition, all SWNTs grown from the nanoporous templates have narrower diameter distribution compared to the SWNTs grown from SiO2 planar surface. The obtained results are straightforward and suggest that the template growth has potential for SWNT growth with very narrow diameter distribution.  相似文献   

17.
The simultaneous intercalation of surfactants and TEOS into clay interlayers and subsequent intragallery ammonia-catalyzed hydrolysis of TEOS resulted in mesoporous silica-pillared clay (SPC). These SPC materials exhibited refractions corresponding to a basal spacing of 3.7-4.3 nm, a uniform pore size of 2.5-3.16 nm and large surface areas of 567-576 m2/g. Our results indicate that surfactants play a decisive role in pore formation, because they act as micelle-like template during the hydrolysis of TOES. Moreover, the pore size of SPC derivatives is controllable by the molecular length of surfactant. All of the SPC materials reported here exhibit high catalytic activity and selectivity for coker gas oil (CGO) cracking reaction in comparison to parent MCM-41 and Al-MCM-41. The excellent acid catalytic activity, together with their sable, well-organized porous structure, opens up new opportunities for applications in catalysis.  相似文献   

18.
After embedding hematite nanowires (15 wt.% Fe) into a MCM-41 hard template, we have explored alternative routes to induce the structural transformations that lead from hematite to maghemite and magnetite embedded nanowires. The impregnation media (ethanol or water) and the calcination atmosphere (air and NO/He) on the hematite nanowires production play a significant role at the time of reducing and re-oxidizing the embedded hematite nanoparticles. The solids were characterized by X-ray diffraction, nitrogen adsorption, and Mössbauer spectroscopy. The results indicate that the effect of the solvent on the structural properties of the iron species is more important than the calcination atmosphere. The best conditions for iron magnetic nanowires not to get outside of the MCM-41 channels over the treatments are reached using water as the solvent and air as the calcination atmosphere. When ethanol is the solvent used over the preparation step, the end iron oxides are in the form of nanotubes spread out on the amorphous silica walls of the matrix.  相似文献   

19.
A series of carbon nanomaterials, particularly multi-walled carbon nanotubes (MWNT), are obtained as products from catalytic pyrolysis of the cross-linked phenol-formaldehyde resins with different ferrocene under inert atmosphere. The morphology and structure of the samples were evaluated by TEM and XRD techniques. CNTs morphology is dependent on the iron nanoparticles and their forms (Fe, Fe3C) resulted from ferrocene decomposition. The amount of nanotubes increases with iron content released from ferrocene catalyst during the pyrolysis process. Fe3C nanoparticles drive the nucleation and the growth of carbon nanotubes during the pyrolysis process. Long (up to microns) well-defined MWNTs with small defects, ropes and disordered carbon are representatives in the pyrolyzed resins composition.  相似文献   

20.
A series of metallosilicates (transition metal elements—TME) MCM-41 (TME=Fe, Cu, Nb, V, Mo) mesoporous molecular sieves with variable Si/TME ratios have been synthesized and characterised by low temperature N2 adsorption/desorption, XRD, XPS, H2-TPR, FTIR combined with NO+NO2 adsorption, diffuse reflectance UV–Vis spectroscopy, and ESR study. All the materials exhibit hexagonal arrangement of uniform mesopores (with exception of CuMCM-41). Defect holes amid the nanochanels besides well-ordered mesopores characterise mainly Fe-containing materials, in which the highest TME loading was reached. Similar but smaller defects take place in NbMCM-41. The amount of TME included into MCM-41 structure under the preparation conditions used in this work changes in the order: Fe>Nb>Cu≫V≫Mo. This sequence is not related to the oxidation state of metals which was estimated in calcined materials as Fe3+, Nb5+, Cu2+, V5+, Mo6+. It does not also correlate with cation sizes in a simple way. The possibility of forming tetrahedral coordination seems to limit the TME incorporation into the MCM-41 skeleton if free metal cations are used in the gel (Cu2+, Fe3+, Nb5+). Al in the gel makes the isomorphously substitution of silicon by copper easier, but part of Cu occupies extra framework cationic positions in the final material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号