首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The absorption spectrum of acetylene-d has been observed at high resolution between 6470 and 6630 cm−1 using an external cavity diode laser. Three cold bands have been observed: the strong 2ν1 band, the weaker ν1 + ν2 + 2ν5 band, and the (ν1 + ν3 + ν5)1 band, which gains its intensity through Coriolis resonance with 2ν1. Centers of unblended lines are determined with an accuracy of approximately 10 MHz.  相似文献   

2.
Secreted frizzled related protein-1 (SFRP1) plays a key role in many diverse processes, including embryogenesis, tissue repair, bone formation, and tumor genesis. Previous studies have shown the effects of the SFRP1 gene on lung development using the SFRP1 knockout mouse model via histological and physiological studies. In this study, the feasibility of ADC (acquired via HP 3He) to detect altered lung structure in the SFRP1 knockout (SFRP1−/−) mice was investigated, and compared to analysis by histology. This study consisted of two groups, the wild-type (WT) mice and the knockout (KO) mice with n = 6 mice for each group. 3He ADC MRI and histology were performed on all of the animals. The global Lm values of WT and KO mice were 35.0 ± 0.8 μm and 38.4 ± 3.8 μm, respectively, which translated to an increase of 9.58% in the Lm of KO mice. The mean global ADCs for the WT and KO mice were 0.12 ± 0.01 cm2/s and 0.13 ± 0.01 cm2/s, respectively, which equated to a relative increase of 8.0% in the KO mice compared to the WT mice. In the sub-analysis of the anterior, medial and posterior lung regions, Lm increased by 10.50%, 6.66% and 11.84% in the KO mice, respectively, whereas the differences in ADC between the two groups in the anterior, medial, and posterior regions were 7.3%, 8.3%, and 4.6%, respectively. These results suggest that HP MRI measurements can be used as a suitable substitute for histology to obtain valuable information about lung geometry non-invasively. This technique is also advantageous as regional measurements can be performed, which can identify lung destruction more precisely. Most importantly, this approach extends far beyond the specific pathology analyzed in this study, as it can be applied to many other pathological conditions in the lung tissue, as well to many other embryonic studies.  相似文献   

3.
Alkaline-earth silicate phosphors CaMgSi2xO6+2x:Eu2+ (1.00?x?1.20) were prepared by traditional solid-state reaction. The phosphors showed an intense blue emission centered around 453 nm, with both 254 and 147 nm excitations. The host absorption below 200 nm in the excitation spectra consisted of two bands around 160 and 190 nm. The band around 160 nm was ascertained to be associated with the SiO4-tetrahedra and MgO6-polyhedra, and that around 190 nm was due to the CaO8-polyhedra or some impurities. The incorporation of excess Si of less than 15% would not lead to formation of impurities and the results indicated that an appropriate Si excess could improve the Photoluminescence (PL) intensity in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions  相似文献   

4.
The kinetics and mechanisms of the reactions of cyanomidyl radical (HNCN) with oxygen atoms and molecules have been investigated by ab initio calculations with rate constant prediction. The doublet and quartet state potential energy surfaces (PESs) of the two reactions have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df, 2p) level based on geometries optimized at the CCSD/6-311++G(d, p) level. The rate constants for various product channels of the two reactions in the temperature range of 300-3000 K are predicted by variational transition state and RRKM theories. The predicted total rate constants of the O(3P) + HNCN reaction at 760 Torr Ar pressure can be represented by the expressions ktotal (O + HNCN) = 3.12 × 10−10 × T−0.05 exp (−37/T) cm3 molecule−1 s−1 at T = 300-3000 K. The branching ratios of primary channels of the O(3P) + HNCN are predicted: k1 for producing the NO + CNH accounts for 0.72-0.64, k2 + k9 for producing the 3NH + NCO accounts for 0.27-0.32, and k6 for producing the CN + HNO accounts for 0.01-0.07 in the temperature range studied. Meanwhile, the predicted total rate constants of the O2 + HNCN reaction at 760 Torr Ar pressure can be represented by the expression, ktotal(O2 + HNCN) = 2.10 × 10−16 × T1.28exp (−12200/T) cm3 molecule−1 s−1 at T = 300-3000 K. The predicted branching ratio for k11 + k13 producing HO2 + 3NCN as the primary products accounts for 0.98-1.00 in the temperature range studied.  相似文献   

5.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

6.
High-sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS) is used to measure the high resolution absorption spectrum of H218O between 12,580 and 13,550 cm−1. This spectral region covers the 3v+δ polyad of very weak absorption. Four isotopologues of water (H218O, H216O, H217O, HD18O) are found to contribute to the observed spectrum. Spectrum analysis is performed with the aid of variational calculations and allowed for assigning 1126 lines belonging to H218O, while only 160 H218O lines are included in the HITRAN-2008 database. Altogether, 823 accurate energy levels of H218O are determined from transitions attributed to 26 upper vibrational states, 438 of them being reported for the first time. New information includes energy levels of four newly observed vibrational states of H218O: (2 4 0), (1 4 1), (0 4 2) and (2 3 1) at 13,167.718, 13,212.678, 13,403.71 and 15,073.975 cm−1, respectively. H218O transitions involving highly excited bending states like (1 6 0), (0 6 1), (0 7 1), (1 7 0), (0 9 0) and even (0 10 0) have been identified as a result of an intensity borrowing from stronger bands via high-order resonance interactions. Thirty-six new energy levels of H217O, present with a 2% relative concentration in our sample, could be determined. The rotational structure of the (0 2 3) state of HD18O at 13,245.497 cm−1 is also reported for the first time.  相似文献   

7.
The absorption spectrum of 18O enriched water has been recorded by continuous wave cavity ring down spectroscopy between 5905.7 and 6725.7 cm−1 using a series of fibred DFB lasers. The investigated spectral region corresponds to the important 1.55 μm transparency window of the atmosphere where water absorption is very weak. The typical CRDS sensitivity (noise equivalent absorption of 5×10−10 cm−1) allowed for the detection of lines with intensity as low as 10−28 cm/molecule while the minimum intensity value provided by HITRAN in the considered spectral region is 1.7×10−24 cm/molecule. The line parameters were retrieved with the help of an interactive least squares multi-lines fitting program assuming a Voigt function as line profile. Overall, 4510 absorption lines belonging to the H218O, H216O, HD18O, HD16O and H217O water isotopologues were measured. Their intensities range between 3×10−29 and 5×10−23 cm/molecule at 296 K and the typical accuracy on the line positions is 1×10−3 cm−1. 2074 of the observed lines attributed to H218O, HD18O and H217O are reported for the first time. The transitions were assigned on the basis of variational calculations resulting in 288, 135 and 38 newly determined rovibrational energy levels for the H218O, HD18O and H217O isotopologues, respectively. The new data set includes the band origin of the 4ν2 bending overtone of H218O at 6110.4239 cm−1 and rovibrational levels corresponding to J and Ka values up to 18 and 12, respectively, for the strongest bands of H218O: 4ν2, ν1+2ν2, 2ν2+ν3, 2ν1, ν1+ν3, and ν2+ν3. The obtained experimental results have been compared to the spectroscopic parameters provided by the HITRAN database and to the recent IUPAC critical review of the rovibrational spectrum of H218O and H217O as well as to variational calculations. Large discrepancies between the 4ν2 variationally predicted and experimental intensities have been evidenced for the H218O and H216O molecules.  相似文献   

8.
We report the iron isotope effect on a transition temperature (Tc) in an optimally-doped (Ba,K)Fe2As2 (Tc = 38 K) and SmFeAsO1−y (Tc = 54 K) superconductors. In order to obtain the reliable isotope shift in Tc, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe2As2 shows an inverse iron isotope effect αFe = −0.18 ± 0.03 while SmFeAsO1−y shows a small iron isotope effect αFe = −0.02 ± 0.01, where the isotope exponent α is defined by Tc  Mα (M is the isotopic mass). The results show that αFe changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.  相似文献   

9.
The direct observation and rotational analysis of the (3, 6) band in the comet-tail (A2Πi-X2Σ+) system of CO+ are carried out for the first time employing optical heterodyne and magnetic rotation enhanced velocity modulation spectroscopy. That 193 lines are assigned to this band ranging from 12 100 to 12 370 cm−1 results in most accurate molecular constants by nonlinear least-squares fitting procedure employing the effective Hamiltonians.  相似文献   

10.
The quantitative assessment of gene expression and related enzyme activity in vivo could be important for the characterization of gene altering diseases and therapy. The development of imaging techniques, based on specific reporter molecules may enable routine non-invasive assessment of enzyme activity and gene expression in vivo. We recently reported the use of commercially available S-Gal® as a β-galactosidase reporter for 1H MRI, and the synthesis of several S-Gal® analogs with enhanced response to β-galactosidase activity. We have now compared these analogs in vitro and have identified the optimal analog, C3-GD, based on strong T1 and T2 response to enzyme presence (ΔR1 and ΔR2 ~ 1.8 times S-Gal®). Moreover, application is demonstrated in vivo in human breast tumor xenografts. MRI studies in MCF7-lacZ tumors implanted subcutaneously in athymic nude mice (n = 6), showed significant reduction in T1 and T2 values (each ~ 13%) 2 h after intra-tumoral injection of C3-GD, whereas the MCF7 (wild type) tumors showed slight increase. Thus, C3-GD successfully detects β-galactosidase activity in vivo and shows promise as a lacZ gene 1H MR reporter molecule.  相似文献   

11.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

12.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

13.
This paper reports for the first time both, an experimental observation and theoretical calculations of the K2 43Δg state. For the experiment we used cw perturbation-facilitated optical-optical double resonance (PFOODR) spectroscopy. A single mode Ti-sapphire laser and a dye laser served as the pump and probe lasers, respectively. A total of 55 PFOODR signals have been assigned to the 43Δg ← b3Πu transitions. Absolute vibrational numbering was determined by using quantum defect analysis combined with comparing observed intensities with calculated Franck-Condon factors (FCF). For the former we used known parameters from the 23Δg state since the 23Δg and the 43Δg states belong to the same Rydberg series. We report here our experimental and calculated spectroscopic constants, the corresponding RKR potential energy curve, the Franck-Condon table for the 43Δg ↔ b3 Πu system, as well as a comparison with the theoretical potential energy curve. The Te value is found to be 28408.938(52) cm−1.  相似文献   

14.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

15.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

16.
The reduction process of Bi3+, HTeO2+ and their mixtures on Au electrode surface was studied by cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy and chronoamperometry. XRD and EDS methods were also used to measure the reductive products prepared under different potentials and provide the evidences of the reactions. The results indicate that the reduction of HTeO2+ occurs at more positive potential than that of Bi3+, but its reduction rate is slower and adsorption phenomenon exists during its reduction process. Bi2Te3 compound can be obtained potentiostatically at a proper potential in all the mixed solutions with concentration ratio CHTe+O2/CBi3+ in our research range (0.1-10). But pure Bi2Te3 compound can only be obtained at 42 mV in the solution with concentration ratio CHTe+O2/CBi3+ equaling to 1. And the formation of Bi2Te3 compound is an inductive co-depositing process: (1) HTeO2+ + 4e + 3H+ → Te0 + 2H2O, (2) 3Te0 + 2Bi3+ + 6e → Bi2Te3.  相似文献   

17.

Purpose

Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin–lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples.

Methods

Simulations and experimental measurements at 9.4 T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons.

Results

The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. > 2 ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (< 2 ppm) and exchange is in the intermediate-to-fast regime. The image contrasts scale differently with field strength, exchange rate and concentration.

Conclusion

CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ-dependent acquisitions can be employed to selectively portray protons of specific exchange rates.  相似文献   

18.
The densities ρ, speed of sound u, data of o-toluidine (i) + tetrahydropyran (j) + N,N-dimethylformamide (k) and its {tetrahydropyran (j) + N,N-dimethylformamide (k); o-toluidine (i) + N,N-dimethylformamide (k)} binaries have been measured as a function of composition at 298.15, 303.15 and 308.15 K. The excess molar enthalpies, HE data of same set of binary mixtures have also been measured over entire composition at 308.15 K. The densities and speeds of sound data of binary and ternary mixtures have been utilized to determine their excess molar volumes, VE and excess isentropic compressibilities, κSE. The observed thermodynamic properties of binary and ternary mixtures have been analyzed in terms of Graph theory. It has been observed that Graph theory correctly predicts the sign as well as magnitude of thermodynamic properties.  相似文献   

19.
Enhancement spectra of the collision-induced absorption in the first overtone region 5500-6750 cm−1 of D2 in the D2-Ar, D2-Kr, and D2-Xe binary mixtures were studied at 298 K for base densities of D2 in the range 55-251 amagat and for partial densities of Ar, Kr, and Xe in the range 46-384 amagat. The observed spectra consist of the following quadrupolar transitions: O2(3), O2(2), Q2 (J), J = 1-5 and S2 (J), J = 0-5 of D2. Binary and ternary absorption coefficients were determined from the integrated absorption coefficients of the band. Profile analyses of the spectra were carried out using the Birnbaum-Cohen (BC) lineshape function and characteristic lineshape parameters were determined from the analyses.  相似文献   

20.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号