首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Planar CdBxF2−xp-CdF2–CdBxF2−x sandwich nanostructures prepared on the surface of the n-type CdF2 bulk crystal are studied to register the spin transistor and quantum spin Hall-effects. The current–voltage characteristics of the ultra-shallow p+n junctions verify the CdF2 gap, 7.8 eV, and the quantum subbands of the 2D holes in the p-type CdF2 quantum well confined by the CdBxF2−xδ-barriers. The temperature and magnetic field dependencies of the resistance, specific heat and magnetic susceptibility demonstrate the high temperature superconductor properties for the CdBxF2−xδ-barriers. The value of the superconductor energy gap, 2Δ = 102.06 meV, determined by the tunneling spectroscopy method appears to be in a good agreement with the relationship between the zero-resistance supercurrent in superconductor state and the conductance in normal state, πΔ/e, at the energies of the 2D hole subbands. The results obtained are evidence of the important role of the multiple Andreev reflections in the creation of the high spin polarization of the 2D holes in the edged channels of the sandwich device. The high spin hole polarization in the edged channels is shown to identify the mechanism of the spin transistor and quantum spin Hall-effects induced by varying the top gate voltage, which is revealed by the first observation of the Hall quantum conductance staircase.  相似文献   

2.
Nanocrystalline Ca1−xHoxMnO3−δ (0?x?0.3) manganites were synthesized as phase-pure by a simple and instantaneous solution autogel combustion method, which is a low temperature initiated synthetic route to obtain fine grain size. All the samples, heated at 800 °C for 18 h, can be produced as phase-pure; the polycrystalline powders are homogeneous and possess ultrafine particle size. The holmium-doped calcium manganites retain the orthorhombic phase of the undoped sample. The scanning electron microscope (SEM) images revealed that the combustion-derived compounds exhibit particle size that decreases with holmium content from 300 to 80 nm. All manganites show two active IR vibrational modes near 400 and 600 cm−1. The high temperature dependence of resistivity was measured using a standard four-probe method in the range 25-600 °C. All the samples exhibit semiconductor behaviour and holmium induces a marked decrease in the electrical resistivity when compared with the parent CaMnO3. The results can be well attributed to the Mn4+/Mn3+ ratio and to the particle grain size.  相似文献   

3.
La1−xCaxMnO3+δ (0.0?x?1.0) samples were prepared and their resistivity and Seebeck coefficients were measured in the high-temperature range. Ca doping changes the ratio of Mn3+/Mn4+ and influences the electronic transport behavior markedly. With the increase of Ca concentration, the samples change from a p-type semiconductor to an n-type one and Seebeck coefficient becomes increasingly negative. Low doping (x=0.2) and high doping (x=0.8) induces the drop of the resistivity compared with undoped LaMnO3+δ and CaMnO3+δ samples due to the rise of carrier concentration. However, the resistivity of moderate-doped samples (x=0.4, 0.6) is larger than low- and high-doped samples because dopant scattering decreases carrier mobility.  相似文献   

4.
Hall effect measurements were performed on epitaxial CoxTi1−xO2–δ thin films grown on (0 0 1) LaAlO3 by reactive RF magnetron co-sputter deposition. Magnetization measurements reveal ferromagnetic behavior in MH loop at room temperature for CoxTi1−xO2–δ thin films for which x?0.02. An anomalous Hall effect was observed for Co0.10Ti0.90O2−δ films grown with the partial pressure of water P(H2O)=4×10−4 Torr or less. These films exhibit a positive ordinary Hall coefficient and a positive magnetoresistance. X-ray diffraction on films grown under these conditions shows evidence for TinO2n−1 phase due to the deficiency of oxygen. In contrast, Hall measurements taken for undoped and Co-doped TiO2 thin films grown under more oxidizing conditions show only the ordinary Hall effect with a negative Hall coefficient consistent with n-type conduction. For these films, the magnetoresistance was positive and increased monotonically with increasing magnetic field. The results suggest that Co-doped TinO2n−1 may be a dilute magnetic semiconducting oxide for which the carriers couple to the spin polarization.  相似文献   

5.
We have investigated the Hall measurement of Gd(Ba2−xNdx)Cu3O7+δ with x=0, 0.05, 0.1, 0.15, and 0.2 in a magnetic field of 0–1 T. The nominal samples has been prepared by the conventional solid-state reaction technique. The iodometric titration experiment was carried out for samples. The Rietveld analysis of the X-ray diffraction patterns indicates that samples are mainly single phase. The normal state Hall coefficient behaves as 1/T in all samples. All samples with nominal compositions show single sign reversal with variation of magnetic field and temperature. The Hall resistivity of the samples with x=0 and 0.1 close to the superconducting transition temperature changes its sign with decreasing temperature and tends to a minimum −Δmax, and then monotonically goes to zero. The absolute value of −Δmax decreases with the increase of magnetic field. This can be qualitatively explained by a model calculation based on the time-dependent Ginsburg–Landau theory.  相似文献   

6.
The glass transition behavior of glassy GaxSe100−x (x=0, 2.5, 5, 7.5 and 10) systems were investigated using differential scanning calorimetry (DSC). The variation of glass transition temperature, Tg, with Ga concentration has been studied. The value of activation energy of glass transition, Eg, has been found to increase with increase in Ga content. This increase in Eg has been explained in terms of the average heat of atomization for these glasses.  相似文献   

7.
Amorphous Se90Te10−xAgx (0?x?6) films are obtained by thermal evaporation technique under vacuum from the synthesized bulk materials on pyrographite and glass substrates. X-ray analysis shows the amorphous nature of the obtained films. The dc electrical conductivity was studied for different thicknesses (165-711 nm) as a function of temperature in the range (298-323 K) below the corresponding Tg for the studied films. The obtained results show that the conduction activation energy has a single value through the investigated range of temperature which can be explained in accordance with Mott and Davis model. The I-V characteristic curves for the film compositions are found to be typical for a memory switch. The mean value of the threshold voltage increases linearly with increasing film thickness (165-711 nm), while it decreases exponentially with increasing temperature in the investigated range for the studied compositions. The results are explained in accordance with the electrothermal model for the switching process. The effect of Ag on the studied parameters is also investigated.  相似文献   

8.
In this work, we report on the physical properties of good-quality polycrystalline superconducting samples of La2−xSrxCu1−yZnyO4−δ (y=0, 0.02) prepared by a wet-chemical method, focusing on the temperature dependence of the critical current. Using the wet-chemical method, we were able to produce samples with improved homogeneity compared to the solid-state method. A complete set of samples with several carrier concentrations, ranging from the underdoped (strontium concentration x≈0.05) to the highly overdoped (x≈0.25) region, were prepared and investigated. The X-ray diffraction analysis, zero-field cooling magnetization and electrical resistivity measurements were reported on earlier. The structural parameters of the prepared samples seem to be slightly modified by the preparation method and their critical temperatures were lower than reported in the literature. The temperature dependence of the critical current was explained by a theoretical model which took the granular structure of the samples into account.  相似文献   

9.
A series of the double-doping samples La(2+4x)/3Sr(1−4x)/3Mn1–xCuxO3(0?x?0.2)(0?x?0.2)with the Mn3+/Mn4+ ratio fixed at 2:1 and the single-doping samples La2/3Sr1/3Mn1–xCuxO3(0?x?0.2)(0?x?0.2) have been investigated. For the double-doping samples, though the ratio Mn3+/Mn4+=2:1 has been generally recognized the optimum ratio, the Curie temperature TCTC and metallic–insulator transition temperature Tp1Tp1 are more rapidly decreased by Cu substitution than that corresponding to single-doping samples. And the resistivity ρρ value for the double doping is larger about two or three orders of magnitude than that corresponding to single doping. At the same time, two resistivity peaks and two magnetoresistance (MR) peaks appear. We suggest that for the double-doping samples the A-site cation size 〈rA〉 and the A-site mismatch factor σ2σ2 decreases with increasing doping level, which leads to the system microstructural distortion. This microstructural distortion makes the Mn3+–O–Mn4+ cut off more cluster-spin except for the clusters induced by Cu. These cluster interfaces contribute to ρρ, which exceeds far the contribution of eg electron decreasing with doping increasing in the single doping. At the same time, such interface scattering also gives rise to the appearance of second peak for the double-doping samples. The experimental results shows that double doping could be also a potential way in tuning colossal MR (CMR), which can give a guide for the adequate selection of CMR materials.  相似文献   

10.
DC electrical conductivity (σdc) of electron-doped antiferromagnetic CaMn1−xCrxO3 (0?x?0.3) has been discussed elaborately in the light of polaron hopping conduction. The increase in Cr doping concentration increases the conductivity and decreases the activation energy. Non-adiabatic polaron hopping conduction is observed in all the manganites at high temperatures. The analysis of σdc data shows that small polarons are formed at lower concentrations (?5%) of Cr doping and undoped samples. However, large polarons are materialized at higher doping (?10%) concentrations. This is consistent with the fact that doped Cr3+ has larger ionic size compared to that of Mn4+. Again, strong electron-phonon (e-ph) interaction is perceived in undoped and 5% Cr-doped samples but not in manganites with larger doping concentration. This also confirms the formation of larger polarons with the increase of x. Mott's variable range hopping (VRH) model can elucidate the dc conductivity at very low temperatures. It has been detected that single phonon-assisted hopping is responsible for the dc conduction in the Cr-doped CaMnO3 manganites.  相似文献   

11.
We report here on the fluorination of the perovskite-related phases La1−xSrxFe1−yCoyO3−δ. The introduction of fluorine in place of oxygen is achieved through a low-temperature (400 °C) reaction with poly(vinylidene fluoride). X-ray powder diffraction data show that in all cases the fluorination leads to an expansion in the unit cell, which is consistent with partial replacement of oxygen by fluorine and consequent reduction in the oxidation state of iron and/or cobalt. This reduction in oxidation state is confirmed by X-ray absorption- and Mössbauer-spectroscopy. The Mössbauer spectra show complex magnetically split hyperfine patterns for the fluorinated samples, reflecting the interactions between Fe3+ ions, which are not possible in oxides containing Fe4+.  相似文献   

12.
A series of the double-doping samples La(2+4x)/3Sr(1−4x)/3Mn1−xCuxO3(0?x?0.2)(0?x?0.2) with the Mn3+/Mn4+ ratio fixed at 2:1 have been prepared. The structural, magnetic, transport properties and magnetoresistance of the series samples have been investigated. It is found that no apparent crystal structure change is introduced by Cu doping up to x=0.20x=0.20. But the Curie temperature TCTC and magnetization M   are strongly affected by Cu substitution. A remarkable magnetotransport behavior, characterized by double bumps, is observed, and an obvious low-temperature upturn is found in the range of 0.07?x?0.120.07?x?0.12. As a result, the temperature range of colossal magnetoresistance (CMR) is greatly broadened. Moreover, it is found that the room temperature magnetoresistance (MR) of double-doping samples is obviously larger that the undoped La2/3Sr1/3Mn1−xCuxO3 at 300 K, which can give a guide for the adequate selection of the room temperature CMR materials.  相似文献   

13.
14.
We report the microstructure change of BaSnO3 (BSO)–YBa2Cu3O7−x (YBCO) thin film system grown on SrTiO3 single crystal substrates by pulsed laser deposition with using the “surface-modified-target” and “mixture-target” methods. Although it was confirmed that the thick BSO nanorods incorporated to YBCO films act as strong artificial pinning centers, the formation mechanism of the nanorods is still unclear. The purpose of this work is to extend the structural investigation to higher contents of BSO (up to 71 vol.%) in order to enlighten the relationship among interfacial energy, morphology and pinning performance in binary BSO–YBCO films.  相似文献   

15.
The magnetic, transport, and optical properties of electron-doped Ca1−xLaxMnO3−δ single crystals with x  ?0.12 were studied. The magnetic measurements show that in single crystals with x=0x=0 and 0.05 the G-type AFM phase with weak FM component is realized and in crystals with x=0.10x=0.10 and 0.12 the G- and C-type AFM phases coexist. The C-type magnetic structure arises at less concentration of La than in polycrystalline samples as a result of oxygen vacancies being additional source of electrons. Under magnetic transitions in the G- and C-type phases, resistivity and magnetoresistance of the doped single crystals have anomalies. Optical absorption in IR range indicates formation of a charge gap in crystals with x=0.10x=0.10 and 0.12 at appearance of the C-AFM and monoclinic phase with orbital/charge ordering. By comparing optical and transport properties, heterogeneous electronic state and its relation with heterogeneous magnetic state are shown.  相似文献   

16.
This report presents a study of the temperature dependence of the penetration depth in Y1−xCaxBa2Cu3O7−δ thin films, which shows that a contribution to the order parameter from phase fluctuations in optimally doped samples cannot be excluded, and demonstrates the appearance of an imaginary component in the order parameter in overdoped samples. Measurements were performed using two complementary techniques: the parallel plate resonator (PPR), operated at 10 GHz, and far infrared (FIR) transmission, where the absolute value of the penetration depth can be obtained.  相似文献   

17.
We report the synthesis, structure and low-field magnetotransport properties of Mischmetal (Mm)-doped La0.7−xMmxCa0.3MnO3 (0?x?0.45) manganite. Mischmetal—Mm—is a natural mixture of rare earth elements La, Ce, Pr and Nd with ∼28%, 50%, 6% and 16% composition, respectively. All the samples crystallize in orthorhombic structure. Increasing x (Mm), corresponding to decreasing the La-site average ionic radii (〈rA〉) hence increasing the size mismatch (i.e. variance σ2), results in strong suppression of ferromagnetism (TC) and the associated metallicity (TIM). It may be pointed out that Mm (La, Ce, Pr and Nd) substitution has been done to create two effects. First, creation of multivalence of Mn (2+, 3+ and 4+) via Ce substitution and second to create higher degree of disorder due to size difference brought in not only by Ce but also by Pr and Nd. Evidences and arguments based on XPS analysis suggest that multivalent ions La, Mm and Ca, and the resulting presence of Mn2+, Mn3+ and Mn4+, causes the simultaneous operation of ferromagnetism-double exchange (Mn2+/Mn3+ and Mn3+/Mn4+) and antiferromagnetic-superexchange (Mn3+/Mn3+ and Mn2+/Mn2+) interaction. In addition, Mm doping also creates inhomogenities at La—as well as Mn—site due to size and valency difference. A curiously huge magnetoresistance as high as ∼63% for x=0.35, under a moderate magnetic field of ∼10 kOe has been observed and even at low magnetic field of ∼3 kOe MR is ∼30%. The competing double exchange and superexchange coupled with inhomogenities are the most likely cause for the occurrence of large ∼63% CMR in the Mm-doped LCMO.  相似文献   

18.
Temperature and frequency dependencies of the real (χ′) and imaginary (χ″) parts of the dynamic magnetic susceptibility were studied experimentally in fine particles of La-Ag manganites prepared by various methods. The samples under study have the Curie points in the range TC=42-48 °C, which is a medical hyperthermia range of interest. When approaching TC from below, a critical peak of χ″ was revealed, followed by a steep drop while passing to the paramagnetic phase. The experiments on the magnetic radio-frequency (RF) heating of the manganite aqueous suspensions demonstrated good autostabilization of the temperature near TC. Peculiar instability is found in the heating kinetics, caused by the observed critical behavior of the RF losses. The prospects of the La-Ag manganites as candidates for application in the temperature-controlled hyperthermia are discussed.  相似文献   

19.
Electrical conductance and X-ray diffraction (XRD) measurements of lanthanum-deficiency La1−xxMnO3 (x=0.05, 0.10 and 0.20) polycrystalline samples were performed to examine the effect of the internal pressure at B-site on the conduction mechanism. The structural study reveals that all samples crystallize in the rhombohedral system. The electronic conduction appears to be thermally activated at high temperature, which indicates the presence of semiconductor behaviour. The increase of the x content converts 3x Mn3+ to 3x Mn4+ ions with smaller ionic radius, which reduces the internal pressure and leads to the increase of the one-electron bandwidth W. This increase causes the appearance of metallic behaviour at low temperature for x=0.10 and 0.20 content.  相似文献   

20.
Perovskites BaTi1−xFexO3 has been synthesized with the concentration x ranging from 0.01 to 0.02. Their transformation point of ferroelectric to paraelectric and the corresponding latent heat of the phase transformation were observed to decrease with increasing the doping level of Fe3+. Bonded layered composites BaTi1−xFexO3–Tb1−yDyyFe2−z have been fabricated and their magnetoelectric effect has been investigated. The sample containing a layer of perovskite BaTi0.985Fe0.015O3 was found to show the maximum transverse ME voltage coefficient, which is about 1422 mV Oe−1 cm−1 under a magnetic field of 1580 Oe, in these bilayers. Analysis shows that the Fe-doped BaTiO3 with doping level at about 1.5% should have largest piezoelectric coefficient in these ceramics BaTi1−xFexO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号