首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new horn for high displacement amplification is developed. The profile of the horn is a cubic Bézier curve. The ultrasonic actuation of the horn exploits the first longitudinal displacement mode of the horn. A design method of the horn using an optimization scheme and finite element analyses is developed. Prototypes of the horns are manufactured by a numerical control machining process. Performances of the proposed horn have been evaluated by experiments. Experimental results of the harmonic response of the fabricated horn confirm the effectiveness of the design method. The displacement amplification of the proposed horn is 71% higher than that of the traditional catenoidal horn with the same length and end surface diameters.  相似文献   

2.
A new horn with high displacement amplification for ultrasonic welding is developed. The profile of the horn is a nonrational B-spline curve with an open uniform knot vector. The ultrasonic actuation of the horn exploits the first longitudinal displacement mode of the horn. The horn is designed by an optimization scheme and finite element analyses. Performances of the proposed horn have been evaluated by experiments. The displacement amplification of the proposed horn is 41.4% and 8.6% higher than that of the traditional catenoidal horn and a Bézier-profile horn, respectively, with the same length and end surface diameters. The developed horn has a lower displacement amplification than the nonuniform rational B-spline profiled horn but a much smoother stress distribution. The developed horn, the catenoidal horn, and the Bézier horn are fabricated and used for ultrasonic welding of lap-shear specimens. The bonding strength of the joints welded by the open uniform nonrational B-spline (OUNBS) horn is the highest among the three horns for the various welding parameters considered. The locations of the failure mode and the distribution of the voids of the specimens are investigated to explain the reason of the high bonding strength achieved by the OUNBS horn.  相似文献   

3.
The present study evaluates the tool life and the fracture toughness of AISI M2 steel cutting tools boronized by the paste boriding process. The treatment was done in selective form on the tool tips of the steels. The temperatures were set at 1173 and 1273 K with 4 h of exposure time and modifying the boron carbide paste thicknesses in 3 and 4 mm. Microindentation fracture toughness method was used on the borided tool at the temperature of 1273 K and a 4 mm paste thickness, with a 100 g load at different distances from the surface. Also, the borided cutting tools were worn by the turning process that implied the machining of AISI 1018 steel increasing the nominal cutting speed, of 55 m/min, in 10 and 25% and maintaining the feed and the depth cut constants. The tool life was evaluated by the Taylor's equation that shows the dependence of the experimental parameters of the boriding process.  相似文献   

4.
The cutting of a microstructured polymer optical fibre to form an optical end-face is studied. The effect of the temperature and speed of the cutting blade on the end-face is qualitatively assessed and it is found that for fibres at temperatures in the range 70-90 °C, a blade at a similar temperature moving at a speed of less than 0.5 mm/s produces a good quality end-face. The nature of the damage caused by the cutting process was examined and found to vary with fibre temperature, blade quality and cut depth. Thermo-mechanical analysis showed that the drawn material was significantly more visco-elastic than the annealed raw material in the 70-90 °C temperature range. The behaviour of the surface damage with cut depth was found to be consistent with the behaviour of a visco-elastic material.  相似文献   

5.
This paper present the optimum conditions for direct CO2 laser cutting of 6-mm-thick polymethylmethacrylate (PMMA) for backlit module applications. The influence of the major processing parameters on the optical transmittance ratio and surface roughness of cut samples material have been discussed. In order to assess the effects of several operational parameters on multiple-performance characteristics, we applied the grey relational analysis method. In this paper, we studied the effects of several laser direct cut parameters, such as assisted gas-flow rate, pulse repetition frequency, cutting speed, and focus position to achieve optimum characteristics for two product characteristics, optical transmittance ratio and work-piece surface roughness. The study involved nine experiments based on an orthogonal array, and results indicate the optimal process parameters as 20 NL/min for assisted-gas flow rate, 5 kHz for pulse repetition frequency, 2 mm/s for cutting speed, and 0 mm for laser focusing position. Additionally, by analyzing the grey relational grade, we found that the assisted-gas flow rate has more influence than any other single parameter.  相似文献   

6.
Radiofrequency ablation is the most common minimally invasive therapy used in the United States to treat hepatocellular carcinoma and liver metastases. The ability to perform real-time temperature imaging while a patient is undergoing ablation therapy may help reduce the high recurrence rates following ablation therapy. Ultrasound echo signals undergo time shifts with increasing temperature due to sound speed and thermal expansion, which are tracked using both 1D cross correlation and 2D block matching based speckle tracking methods. In this paper, we present a quantitative evaluation of the accuracy and precision of temperature estimation using the above algorithms on both simulated and experimental data.A finite element analysis simulation of radiofrequency ablation of hepatic tissue was developed. Finite element analysis provides a method to obtain the exact temperature distribution along with a mapping of the tissue displacement due to thermal expansion. These local displacement maps were combined with the displacement due to speed of sound changes and utilized to generate ultrasound radiofrequency frames at specified time increments over the entire ablation procedure. These echo signals provide an ideal test-bed to evaluate the performance of both speckle tracking methods, since the estimated temperature results can be compared directly to the exact finite element solution. Our results indicate that the 1D cross-correlation (CC) method underestimates the cumulative displacement by 0.20 mm, while the underestimation with 2D block matching (BM) is about 0.14 mm after 360 s of ablation. The 1D method also overestimates the size of the ablated region by 5.4% when compared to 2.4% with the 2D method after 720 s of ablation. Hence 2D block matching provides better tracking of temperature variations when compared to the 1D cross-correlation method over the entire duration of the ablation procedure. In addition, results obtained using 1D cross-correlation diverge from the ideal finite element results after 7 min of ablation and for temperatures greater than 65 °C.In a similar manner, experimental results presented using a tissue-mimicking phantom also demonstrate that the maximum percent difference with 2D block matching was 5%, when compared to 31% with the 1D method over the 700 s heating duration on the phantom.  相似文献   

7.
The ultimate goal of this research was to characterize the ablation depth with respect to pulse energy, translation speed, and consecutive passes in order to obtain the parameters to have smooth microchannel surfaces. A logarithmic dependence of the channel depth on the laser pulse energy was observed with two different distinct ablation regimes. Although the same fluence values were used with two different lens sizes, the slopes of these ablation regimes were quite different. 100 mm lens has a small optical penetration length with steeper ablation slope in the first regime, whereas the 15 mm lens has the opposite. In the second part of the ablation regime, the slope was lower for 100 mm lens as compared to 15 mm lens. Furthermore, spike formation has been seen in 100 mm lens study at 0.308, 0.370, 0.431, and 0.493 J/cm2 fluence values yet no spike formations have been seen in 15 mm lens study.  相似文献   

8.
The deformation mechanisms and fracture behavior of TiN coating on a Si(111) substrate, deposited using magnetron sputtering Ti target, is characterized by nanoindentation experiments. The morphologies of the indentations are revealed by scanning electron microscopy, coupled with in situ atomic force microscopy in nanoindentation experiments. The results show that permanent trigonal impressions and radial plastic grooves are confined within the contact regions even though the peak indenter displacement increases to 1500 nm. Local cracks of TiN appear around the indent marks making the edges of the indentations irregular. The cracks increase with an increase of the indenter displacement until the indenter arrives at (or approaches) the Si(1 1 1) substrate at a critical displacement. As the peak indenter displacement increases to 2500 nm, an interfacial fracture between the TiN coating and the Si(1 1 1) substrate is observed using both scanning electron microscopy micrograph and in situ atomic force microscopy images. The diameter of the interfacial fracture determined by scanning electron microscopy micrographs is more accurate than that determined by in situ atomic force microscopy images in nanoindentation experiments. The failure mechanism of the TiN coating is also investigated by means of a standard nanoscratch test.  相似文献   

9.
This paper describes a cantilevered magnetic actuator driven by magnetostriction in a low magnetic field. The dimensions of the two layers actuator were 1×5 mm and amorphous FeSiB was used as the magnetostrictive material. Since the FeSiB has excellent soft magnetic characteristics, the actuator with FeSiB was able to work in magnetic field strength of less than 10 kA/m. The theoretical formulas for the amount of the displacement and the force of the actuator were obtained. The theoretical results agreed with the experimental one. According to the theoretical formula, the displacement was calculated with the parameter of the mechanical properties of the substrate. To obtain the large displacement, the actuator with Co substrate was designed based on the theoretical formula. The displacement of 153 μm was obtained using Cu substrate of 1.1 μm thickness in the magnetic field of 10 kA/m. © 2008 Elsevier B.V. All rights reserved  相似文献   

10.
11.
The effect of high-power ultrasound pretreatment on the extraction of podophyllotoxin from Podophyllum peltatum was investigated. Direct sonication by an ultrasound probe horn was applied at 24 kHz and a number of factors were investigated: particle size (0.18-0.6 mm), type of solvent (0-100% aqueous ethanol), ultrasonic treatment time (2-40 min), and power of ultrasound (0-100% power intensity, maximum power: 78 W). The optimal condition of ultrasound was achieved with 0.425-0.6 mm particle size, 10 min sonication time, 35 W ultrasound power, and water as the medium. There was no obvious degradation of podophyllotoxin with ultrasound under the applied conditions, and an improvement in extractability was observed. The SEM microscopic structure change of treated samples disclosed the effect of ultrasound on the tissue cells. The increased pore volume and surface area after ultrasonic treatment also confirmed the positive effect of ultrasound pretreatment on the extraction yield of podophyllotoxin from the plant cells.  相似文献   

12.
Shi Y  Zhao C 《Ultrasonics》2011,51(4):397-404
This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2 N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization.  相似文献   

13.
The stoichiometry of B–C thin films was controlled via pulsed laser deposition using a series of ceramic B–C targets (B/C ratio was 3.04–5.92). The effects of B/C ratio in target, laser power and substrate-to-target distance on deposition rate, microstructure, stoichiometry and chemical structure were investigated. The maximum deposition rate was obtained at laser power of 90 mJ and substrate-to-target distance of 50 mm. Boron rich B–C films were obtained and the stoichiometry in B–C thin films was controlled in the range 2.9–4.6. Carbon atoms were bonded with only sp3 hybridization when boron was rich,but with sp2 and sp3 hybridizations when carbon was rich.  相似文献   

14.
Ergün AS 《Ultrasonics》2011,51(7):786-794
Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived “rule of thumb” expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4 cm acoustic aperture, and for a two-dimensional array of 4 × 4 cm2 acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86 MHz, and 0.79 MHz, respectively, when the target depth is 4 cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9 MHz and 0.86 MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.  相似文献   

15.
Detailed experimental results and analytical results are presented on chaotic vibrations of a shallow cylindrical shell-panel subjected to gravity and periodic excitation. The shallow shell-panel with square boundary is simply supported for deflection. In-plane displacement at the boundary is elastically constrained by in-plain springs. In the experiment, the cylindrical shallow shell-panel with thickness 0.24 mm, square form of length 140 mm and mean radius 5150 mm is used for the test specimen. All edges around the shell boundary are simply supported by adhesive flexible films. First, to find fundamental properties of the shell-panel, linear natural frequencies and characteristics of restoring force of the shell-panel are measured. These results are compared with the relevant analytical results. Then, geometrical parameters of the shell-panel are identified. Exciting the shell-panel with lateral periodic acceleration, nonlinear frequency responses of the shell-panel are obtained by sweeping the frequency of periodic acceleration. In typical ranges of the exciting frequency, predominant chaotic responses are generated. Time histories of the responses are recorded for inspection of the chaos. In the analysis, the Donnell equation with lateral inertia force is introduced. Assuming mode functions, the governing equation is reduced to a set of nonlinear ordinary differential equations by the Galerkin procedure. Periodic responses are calculated by the harmonic balance method. Chaotic responses are integrated numerically by the Runge-Kutta-Gill method. The chaotic responses, which are obtained by the experiment and the analysis, are inspected with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. It is found that the dominant chaotic responses of the shell-panel are generated from the responses of the sub-harmonic resonance of order and of the ultra-sub-harmonic resonance of order. By the convergence of the maximum Lyapunov exponent to the embedding dimension, the number of predominant vibration modes which contribute to the chaos is found to be three or four. Fairly good agreements are obtained between the experimental results and the analytical results.  相似文献   

16.
Ni-based WC composite coatings by laser induction hybrid rapid cladding (LIHRC) with elliptical spot were investigated. Results indicate that the efficiency using the elliptical spot of 6 mm × 4 mm (the major and minor axis of laser beam are 6 mm and 4 mm, respectively, the major axis is parallel to the direction of laser scanning) is higher than that using the elliptical spot of 4 mm × 6 mm (the major axis is perpendicular to the direction of laser scanning). The precipitated carbides with the blocky and bar-like shape indicate that WC particles suffer from the heat damage of “the disintegration pattern + the growth pattern”, whichever elliptical spot is used at low laser scanning speed. However, at high laser scanning speed, the blocky carbides are only formed if the elliptical spot of 6 mm × 4 mm is adopted, showing that WC particles present the heat damage of “the disintegration pattern”, whereas the fine carbides are precipitated when the elliptical spot of 4 mm × 6 mm is used, showing that WC particles take on the heat damage of “the radiation pattern”. Especially, the efficiency of LIHRC is increased much four times higher than that of the general laser cladding and crack-free ceramic-metal coatings can be obtained.  相似文献   

17.
We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.  相似文献   

18.
Conventional laser cutting involves the utilization of converging coaxial nozzles to inject the assist gas used to remove the molten material. This processing system prevents the utilization of this technique to cut aluminium alloys for aerospace applications. The inefficient removal of molten material by the assist gas produces cuts with poor quality; very rough cuts, with a large amount of dross, and a large heat affected zone (HAZ) are obtained. An alternative to increase the assist gas performance is the utilization of off-axial supersonic nozzles. Removal of molten material is substantially increased and cuts with high quality are obtained. On the other hand, pulsed laser cutting offers superior results during the processing of high reflectivity materials as aluminium alloys. However, there are no experimental studies which explore the pulsed laser cutting of aluminium alloys by means of a cutting head assisted by an off-axis supersonic nozzle.The present work constitutes a quantitative experimental study to determine the influence of processing parameters on the cutting speed and quality criteria during processing by means of off-axial supersonic nozzles. Cutting experiments were performed in pulsed mode and the results explained under the basis of the molten material removal mechanisms. Performed experiments indicate a reduction in cutting speed as compared to continuous wave (CW) mode processing and the existence of two processing regimes as a function of the pulse frequency. Best results are obtained under the high pulse frequency one (f > 100 Hz) because the superior capabilities of molten material removal of the supersonic jets are completely exploited in this processing regime.  相似文献   

19.
Yoon C  Lee Y  Chang JH  Song TK  Yoo Y 《Ultrasonics》2011,51(7):795-802
Effective receive beamforming in medical ultrasound imaging is important for enhancing spatial and contrast resolution. In current ultrasound receive beamforming, a constant sound speed (e.g., 1540 m/s) is assumed. However, the variations of sound speed in soft tissues could introduce phase distortions, leading to degradation in spatial and contrast resolution. This degradation becomes even more severe in imaging fatty tissues (e.g., breast) and with obese patients. In this paper, a mean sound speed estimation method where phase variance of radio-frequency channel data in the region of interest is evaluated is presented for improving spatial and contrast resolution. The proposed estimation method was validated by the Field II simulation and the tissue mimicking phantom experiments. In the simulation, the sound speed of the medium was set to 1450 m/s and the proposed method was capable of capturing this value correctly. From the phantom experiments, the −18-dB lateral resolution of the point target at 50 mm obtained with the estimated mean sound speed was improved by a factor of 1.3, i.e., from 3.9 mm to 2.9 mm. The proposed estimation method also provides an improvement of 0.4 in the contrast-to-noise ratio, i.e., from 2.4 to 2.8. These results indicate that the proposed mean sound speed estimation method could enhance the spatial and contrast resolution in the medical ultrasound imaging systems.  相似文献   

20.
This paper introduces a novel method for designing the transducer of a highly directional ultrasonic range sensor for detecting obstacles in mobile robot applications. The transducer consists of wave generation, amplification, and radiation sections, and a countermass. The operating principle of this design is based on the parametric array method where the frequency difference between two ultrasonic waves is used to generate a highly directional low-frequency wave with a small aperture. The aim of this study was to design an optimal transducer to generate the two simultaneous longitudinal modes efficiently. We first derived an appropriate mathematical model by combining the continuum model of a bar and countermass with the compatibility condition between a piezoelectric actuator and a linear horn. Then we determined the optimal length of the aluminum horn and the piezoelectric actuator using a finite element method. The proposed sensor exhibited a half-power bandwidth of less than ±1.3° at 44.8 kHz, a much higher directivity than existing conventional ultrasonic range sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号