首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiN薄膜在纳米压痕和纳米划痕下的断裂行为   总被引:1,自引:0,他引:1       下载免费PDF全文
安涛  文懋  田宏伟  王丽丽  宋立军  郑伟涛 《物理学报》2013,62(13):136201-136201
利用磁控溅射方法在Si(111)衬底上制备了具有(111)和(222)择优取向的TiN薄膜. 用纳米压痕和纳米划痕方法研究了该薄膜的变形和断裂行为. 用扫描电子显微镜、纳米压痕原位原子力显微镜及原位光学显微镜并结合加-卸载 曲线及划痕曲线获得了薄膜发生变形和断裂的微观信息. 在压痕试验中, TiN薄膜在压入深度为200 nm时表现为塑性变形及压痕周围的局部断裂, 随着压入深度的增大, 塑性变形和局部断裂变得越显著, 当最大压入深度达到临界值1000 nm时, 薄膜和衬底间发生了界面断裂. 在划痕实验中, 100 mN及200 mN的最大载荷均可以引起界面断裂. 最大为200 mN的载荷使得薄膜发生界面断裂的位置比用100 mN载荷时的位置提前, 但其临界断裂载荷和100 mN时及压痕实验时的临界界面断裂载荷基本相同. 关键词: TiN薄膜 纳米压痕 纳米划痕 界面断裂  相似文献   

2.
High temperature GaN layers have been grown on Si (1 1 1) substrate by metalorganic vapor phase epitaxy (MOVPE). AlN was used as a buffer layer and studied as a function of thickness and growth temperature. The growth was monitored by in situ laser reflectometry. High resolution X-ray diffraction (HRXRD) revealed that optimized monocrystalline GaN was obtained for a 40 nm AlN grown at 1080 °C. This is in good agreement with the results of morphological study by scanning electron microscopy (SEM) and also confirmed by atomic force microscopy (AFM) observations. The best morphology of AlN with columnar structure and lower rms surface roughness is greatly advantageous to the coalescence of the GaN epilayer. Symmetric and asymmetric GaN reflections were combined for twist and stress measurements in monocrystalline GaN. It was found that mosaicity and biaxial tensile stress are still high in 1.7 μm GaN. Curvature radius measurement was also done and correlated to the cracks observations over the GaN surface.  相似文献   

3.
In situ X-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM) were used to study the growth of thin cobalt films at room temperature (RT) on both clean and H-terminated Si(0 0 1) and Si(1 1 1) surfaces. The growth proceeds by first forming an initial CoSi2-like phase at the growth front of the Si substrate. With increasing Co coverage the interfacial layer composition becomes richer in Co and eventually a metallic Co film is formed on top. Hydrogen termination of the Si surface did not suppress the reaction of Co and Si. A pseudo-layer-by-layer growth mode is proposed to describe the growth of Co on H-terminated Si surfaces, while closed-packed small island growth occurs on clean Si surfaces. The difference in growth mode can be attributed to the increase in the surface mobility of Co adatoms in the presence of hydrogen.  相似文献   

4.
The growth of 3C-SiC on Si(1 1 1) substrate was performed at different carbonization temperatures and substrate temperatures by solid-source molecular beam epitaxy (SSMBE). The properties of SiC film were analyzed with in situ reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The best carbonization temperature of 810 °C was found to be optimal for the surface carbonization. The quality of SiC film grown on Si at substrate temperature of 1000 °C is best. The worse crystalline quality for the sample grown at higher temperature was attributed to the large mismatch of thermal expansion coefficient between SiC and Si which caused more dislocation when sample was cooled down to room temperature from higher substrate temperature. Furthermore, the larger size of single pit and the total area of the pits make the quality of SiC films grown at higher temperature worse. More Si atoms for the sample grown at lower temperature were responsible for the degradation of crystalline quality for the sample grown at lower temperature.  相似文献   

5.
We report on the growth of Si on c(2 × 2) reconstructed LaAlO3(0 0 1) surfaces at high substrate temperature (700 °C) by molecular beam epitaxy. An initial Volmer-Weber mode is evidenced using reflection high energy electron diffraction (RHEED), X-ray photoelectron diffraction (XPD) and atomic force microscopy. After the deposition of a few monolayers, the islands coalesce. Using X-ray photoelectron spectroscopy, we demonstrate that Si islands exhibit an abrupt interface with the LaAlO3 substrate without formation of silicate or silica. Finally, combined RHEED and XPD measurements show the epitaxial growth of Si with a unique Si(0 0 1)//LaAlO3(0 0 1) and Si<1 0 0>//LAO<1 1 0> relationship.  相似文献   

6.
We present a study of the growth of silver nanoparticles or clusters on a TiO2(1 1 0) substrate in ultra-high vacuum. The growth is monitored in situ by ion and neutral scattering spectroscopy using He+ scattering and Auger spectroscopy. The scattering measurements show that only part of the surface is covered by Ag suggesting formation of clusters. Additionally an ex-situ study was performed by scanning electron microscopy and atomic force microscopy to determine the size distribution of these clusters. The average size distributions were found to range from about 5 to about 20 nm as a function of the evaporation flux. At the higher evaporation flux we observe formation of the smaller sized clusters.  相似文献   

7.
T.L. Chan  W.C. Lu  K.M. Ho 《Surface science》2006,600(14):179-183
The nanoscale hexagonal pattern observed in scanning tunneling microscopy (STM) for 3-layer and 4-layer Pb islands on Si(1 1 1) is studied theoretically. We found that besides thickness the atomic rearrangement at the Pb/Si interface plays an important role in determining the STM patterns. Electronic structures of the Pb film on Si(1 1 1) obtained from fully relaxed and unrelaxed Pb films are qualitatively different. Simulated STM images for Pb films with different stacking also show that the corrugation patterns are sensitive to the buried Pb-Si interfacial structure.  相似文献   

8.
Ge quantum dots were grown on Si(1 0 0)-(2 × 1) by femtosecond pulsed laser deposition at various substrate temperatures using a femtosecond Ti:sapphire laser. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy were used to analyze the film structure and morphology. The morphology of germanium islands on silicon was studied at different coverages. The results show that femtosecond pulsed laser deposition reduces the minimum temperature for epitaxial growth of Ge quantum dots to ∼280 °C, which is 120 °C lower than previously observed in nanosecond pulsed laser deposition and more than 200 °C lower than that reported for molecular beam epitaxy and chemical vapor deposition.  相似文献   

9.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.  相似文献   

10.
Growth behavior of thin Ag films on Si substrates at room temperature has been investigated by scanning tunneling microscopy and reflection high energy electron diffraction. In the layer-plus-island growth Ag islands show strongly preferred atomic scale heights and flat top. At low coverage (1 ML), islands containing two atomic layers of Ag are overwhelmingly formed. At higher coverages island height distribution shows strong peaks at relative heights corresponding to an even number (2, 4, 6, …) of Ag atomic layers. Beyond some coverage the height preference vanishes due to the appearance of screw dislocations and spiral growth.  相似文献   

11.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

12.
V. Palermo  A. Parisini 《Surface science》2006,600(5):1140-1146
SiC nanocrystals are grown at high temperature on Si(1 0 0) and Si(1 1 1) surfaces starting from a chemisorbed layer of methanol. The decomposition of this layer allows to have a well defined amount of carbon to feed SiC growth. Nanocrystals ranging from 10 nm to 50 nm with density from 100 μm−2 to 1500 μm−2 are obtained, and the total volume of produced SiC corresponds to carbon provided by the chemisorbed organic layer. Large differences in nanocrystal size and density, as well as in surface roughness, are observed depending on substrate orientation. The internal structure, crystallinity and epitaxy of nanocrystals grown on Si(1 0 0) are studied using cross-sectional transmission electron microscopy (XTEM), methanol adsorption and surface evolution using scanning tunnelling microscopy (STM). The joint application of XTEM and STM techniques allows a complete characterization of the geometry and chemical composition of these nanostructures.  相似文献   

13.
Upon deposition of silicon onto the (1 1 0) surface of a silver crystal we have grown massively parallel one-dimensional Si nanowires. They are imaged in scanning tunnelling microscopy as straight, high aspect ratio, nanostructures, all with the same characteristic width of 16 Å, perfectly aligned along the atomic troughs of the bare surface. Low energy electron diffraction confirms the massively parallel assembly of these self-organized nanowires. Photoemission reveals striking quantized states dispersing only along the length of the nanowires, and extremely sharp, two-components, Si 2p core levels. This demonstrates that in the large ensemble each individual nanowire is a well-defined quantum object comprising only two distinct silicon atomic environments. We suggest that this self-assembled array of highly perfect Si nanowires provides a simple, atomically precise, novel template that may impact a wide range of applications.  相似文献   

14.
We have used the Bi(0 0 0 1)/Si(1 1 1) template to grow highly ordered C60 epitaxial thin films and analyzed them using scanning tunneling microscopy and low-energy electron microscopy. The in situ low-energy electron microscope investigations show that the initial nucleation of the C60 islands on the surface takes place at surface defects, such as domain boundaries and multiple steps. The in-plane lattice parameters of this C60 film turns out to be the same as that of the bulk fcc(1 1 1) C60. The line-on-line epitaxial structure is realized in spite of a weak interaction between the C60 molecules and Bi(0 0 0 1) surface, while scanning tunneling spectroscopy indicates that there is a negligible charge transfer between the molecules and the surface.  相似文献   

15.
One-dimensional Ce nanowires have been grown on a single-domain vicinal Si(1 0 0) surface. The growth mode, including the structural and electronic properties as a function of the substrate temperature and Ce coverage, was studied using scanning tunneling microscopy and scanning tunneling spectroscopy. The results show the formation of Ce nanowires along the step edges on the vicinal Si(1 0 0) substrate at 580 °C.  相似文献   

16.
The growth of Pb films on the Si(1 0 0)-2 × 1 surface has been investigated at low temperature using scanning tunneling microscopy. Although the orientation of the substrate is (1 0 0), flat-top Pb islands with (1 1 1) surface can be observed. The island thickness is confined within four to nine atomic layers at low coverage. Among these islands, those with a thickness of six layers are most abundant. Quantum-well states in Pb(1 1 1) islands of different thickness are acquired by scanning tunneling spectroscopy. They are found to be identical to those taken on the Pb(1 1 1) islands grown on the Si(1 1 1)7 × 7 surface. Besides Pb(1 1 1) islands, two additional types of Pb islands are formed: rectangular flat-top Pb(1 0 0) islands and rectangular three-dimensional (3D) Pb islands, and both their orientations rotate by 90° from a terrace to the adjacent one. This phenomenon implies that the structures of Pb(1 0 0) and 3D islands are influenced by the Si(1 0 0)-2 × 1 substrate.  相似文献   

17.
Subsequent III-V integration by metal-organic vapor phase epitaxy (MOVPE) or chemical vapor deposition (CVD) necessitates elaborate preparation of Si(1 0 0) substrates in chemical vapor environments characterized by the presence of hydrogen used as process gas and of various precursor molecules. The atomic structure of Si(1 0 0) surfaces prepared in a MOVPE reactor was investigated by low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) available through a dedicated, contamination-free sample transfer to ultra high vacuum (UHV). Since the substrate misorientation has a fundamental impact on the atomic surface structure, we selected a representative set consisting of Si(1 0 0) with 0.1°, 2° and 6° off-cut in [0 1 1] direction for our study. Similar to standard UHV preparation, the LEED and STM results of the CVD-prepared Si(1 0 0) surfaces indicated two-domain (2 × 1)/(1 × 2) reconstructions for lower misorientations implying a predominance of single-layer steps undesirable for subsequent III-V layers. However, double-layer steps developed on 6° misoriented Si(1 0 0) substrates, but STM also showed odd-numbered step heights and LEED confirmed the presence of minority surface reconstruction domains. Strongly depending on misorientation, the STM images revealed complex step structures correlated to the relative dimer orientation on the terraces.  相似文献   

18.
The growth of thin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) films on a 3C-SiC(0 0 1)c(2 × 2) substrate has been studied by means of photoelectron spectroscopy (PES) and atomic force microscopy (AFM). In the first monolayer the molecules interact with the substrate mainly through the O atoms in the end groups of the molecule. The O atoms have a higher binding energy in the first molecular layer compared to the following layers. No chemical shifts are observed in the Si 2p spectra or in the C 1s spectra from the perylene core of the molecules. From the VB spectra and LEED pattern we conclude that the substrate remains in the c(2 × 2) reconstruction after PTCDA deposition. For thicker films a Stranski-Krastanov film growth was observed with flat lying molecules relative to the substrate.  相似文献   

19.
We have performed the structural and statistical analysis of Yb/Si(1 1 1) and Eu/Si(1 1 1) surfaces in the submonolayer regime utilizing low-energy electron diffraction and scanning tunneling microscopy (STM). The almost identical series of one-dimensional chain structures (e.g., 3 × 2/3 × 1, 5 × 1, 7 × 1, 9 × 1, and 2 × 1 phases) are found in order of increasing metal coverage for both adsorbed systems, however, only the Eu/Si system reveals the ‘√3’-like reconstruction before the 2 × 1 endpoint phase. The atomic models of chain structures are proposed and discussed. In particular, our results suggest the odd-order n×1 (n=5,7,9,…) intermediate reconstructions to incorporate the Seiwatz chains and honeycomb chains with the proportion of m:1, where . The statistical analysis of STM images is carried out to examine the correlation of atomic rows on Eu/Si and Yb/Si surfaces. It is found that Eu stabilizes more ordered row configuration compared to Yb, which can be explained in terms of indirect electronic interaction of atomic chains or/and different magnetic properties of adsorbed species.  相似文献   

20.
The growth of thin subnanometric silicon films on TiO2 (1 1 0)-(1 × 2) reconstructed surfaces at room temperature (RT) has been studied in situ by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS), Auger electron and electron-energy-loss spectroscopies (AES and ELS), quantitative low energy electron diffraction (LEED-IV), and scanning tunneling microscopy (STM). For Si coverage up to one monolayer, a heterogeneous layer is formed. Its composition consists of a mixture of different suboxides SiOx (1 < x ? 2) on top of a further reduced TiO2 surface. Upon Si coverage, the characteristic (1 × 2) LEED pattern from the substrate is completely attenuated, indicating absence of long-range order. Annealing the SiOx overlayer results in the formation of suboxides with different stoichiometry. The LEED pattern recovers the characteristic TiO2 (1 1 0)-(1 × 2) diagram. LEED I-V curves from both, substrate and overlayer, indicate the formation of nanometric sized SiOx clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号