首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.  相似文献   

2.
Very short burn times of nanocomposite, fully dense, stoichiometric 2Al·3CuO thermite particles ignited by electro-static discharge (ESD) observed in earlier experiments are interpreted assuming that the reaction occurs heterogeneously at the Al–CuO interfaces while the initial nanostructure is preserved even after the melting points of various phases present in the particle are exceeded. The heating rate for the ESD-ignited particles is very high, reaching 109?K?s?1. The reaction model assumes that the rate of reaction is limited by transport of the reacting species across the growing layer of Al2O3 separating Al and CuO. The model includes the redox reaction steps considered earlier to describe ignition of 2Al·3CuO nanocomposite thermites and adds steps expected at higher temperatures, when further polymorphic phase changes may occur in Al2O3. A realistic distribution of CuO inclusion sizes in the Al matrix is obtained from electron microscopy and used in the model. The model accounts for heat transfer of the nanocomposite particles with surrounding gas and radiative heat losses. It predicts reasonably well the burn times observed for such particles in experiments. It is also found that neglecting polymorphic phase changes in the growing Al2O3 layer and treating it as a single phase with the diffusion-limited growth rate similar to that of transition aluminas (activation energy of ca. 210?kJ?mol?1) still leads to adequately predicted combustion temperatures and times for the nanocomposite particles rapidly heated by ESD. The model highlights the importance of preparing powders with fine CuO inclusion sizes in the nanocomposite particles necessary to complete the redox reaction; it is also found that the particle combustion temperatures may vary widely depending on their dimensions. Higher combustion temperatures generally lead to greater reaction rates and, respectively, to the more complete combustion.  相似文献   

3.
An equation of state (EOS) for the detonation product of the copper oxide/aluminum (CuO/Al) nanothermite composites is developed based on the Chapman–Jouguet (CJ) theory and the nanothermite detonation experiment. The EOS is implemented into a coupled computational fluid dynamics and computational solid dynamics code through the material point method for the model-based simulations of the detonation response of the CuO/Al nanothermite material placed in a small well. The simulations demonstrate the validity of the formulated EOS to catch the essential feature of the detonation response of the CuO/Al nanothermite. The EOS parameters are determined by comparing simulated and experimentally measured pressure–time histories.  相似文献   

4.
Energetic thermites (mixtures of Al and metal oxides), due to their high energy densities, have broad applications in propulsion, thermal batteries, waste disposal, and power generation for micro systems. Reducing the sizes of Al and metal oxides down to the nanoscale has been shown to be effective in increasing their reaction rates and reducing their ignition delays. However, it remains a challenge to create mixtures of Al and metal oxides with nanoscale uniformity. Here we report synthesis and ignition studies on thermites with a new nanostructure, i.e., CuO/Al core/shell nanowires (NWs). The CuO NW cores were synthesized by the thermal annealing of copper films and served as templates for the deposition of Al shells by subsequent sputtering. The advantage of such a core/shell NW structure is that CuO and Al are uniformly mixed at the nanoscale. The onset temperatures of the exothermic reaction of the core/shell NWs were similar to those of nanoparticle (NP)-based thermites in terms of magnitude, insensitivity to equivalence ratios and sensitivity to heating rates. Moreover, the core/shell NW thermites, compared to NP-based thermites, exhibit greatly improved mixing uniformity and reduced activation energy for the thermite reaction.  相似文献   

5.
曾华东  祝志阳  张吉东  程新路 《中国物理 B》2017,26(5):56101-056101
The diffusion and thermite reaction process of Al/NiO nanothermite composed of Al nanofilm and NiO nano honeycomb are investigated by molecular dynamics simulations in combination with the Reax FF. The diffusion and thermite reaction are characterized by measuring energy release, adiabatic reaction temperature, and activation energy. Based on time evolution of atomic configuration and mean square displacement, the initialization of the thermite reaction process of Al/NiO nanothermite results from the diffusion of Al atoms. Under the microcanonical ensemble, it is found that the adiabatic reaction temperature of the thermite reaction process of Al/NiO nanothermite reaches over 5500 K, and activation energy is 8.43 k J/mol. The release energy of the thermite reaction process of Al/NiO nanothermite is 2.2 k J/g, which is in accordance with the available experimental value. With the same initial temperature, the adiabatic reaction temperature of the thermite reaction process of Al/NiO nanothermite has a tendency to decrease dramatically as the equivalence ratio increases. On the basis of chemical bond analysis, the initial temperature and equivalence ratio have great effects on the thermite reaction process, but do not significantly affect the average length of Al–Ni nor Al–O bond. Overall, the thermite reaction of film-honeycomb Al/NiO nanothermite is a complicated process instead of a theoretical equation.  相似文献   

6.
激光驱动含能复合飞片速度特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用真空磁控溅射方法制备了CuO/Al2O3/Al,(CuO/Al)Ⅱ/CuO/Al2O3/Al,(CuO/Al)Ⅷ/Al2O3/Al三种复合飞片,利用激光共聚焦显微镜和扫描电镜对复合飞片进行表征,结果表明,不同材料膜层的分界面清晰可见,复合薄膜的表面结构致密,颗粒基本尺寸可以达到nm级,均匀性好。利用光子多普勒测速技术对三种复合飞片速度进行测量,结果表明:将飞片靶放置在空气电离点偏前的位置(入射激光方向),增大聚焦光斑,能改善激光电离空气引起的能量屏蔽作用;含能烧蚀层CuO/Al的存在,有助于提高飞片速度。在含能薄膜烧蚀层厚度一定的情况下,增大周期、减小每层薄膜厚度,有助于提高含能薄膜反应程度,减小飞片上升沿时间。在同等激光能量密度下,(CuO/Al)Ⅷ/Al2O3/Al的上升沿时间低于(CuO/Al)Ⅱ/CuO/Al2O3/Al。  相似文献   

7.
A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103–104 K s?1) and laser ignition (heating rate ~106 K s?1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.  相似文献   

8.
Results from combustion experiments, in which the fuel and oxidizer particle sizes of Al/CuO and Al/MoO3 thermites were varied between the nanometer and micrometer scale, are presented to gain further insight into the factors governing their rate of propagation. The experiments were performed with thermite mixtures loosely packed in an instrumented burn tube. Critical properties, including linear propagation rates, dynamic pressure, and spectral emission, were measured and compared to determine if the scale of one constituent had more influence over the rate of propagation than the other. It was found that, although nano-fuel/nano-oxidizer composites propagated the fastest for both the Al/CuO and Al/MoO3 thermites, composites containing micron-aluminum and a nano-scale oxidizer propagated significantly faster than a composite of nano-aluminum and a micron-scale oxidizer. The impact of nano-scale oxidizer versus nano-scale Al is twofold. Firstly, mixtures containing nano-aluminum have a greater mass percentage of Al2O3, which reduces reaction temperatures and propagation rates. Secondly, reactions in porous nano-thermites propagate through a convective mechanism; with heat transfer being driven by flow induced by large pressure gradients. Mixtures containing nano-scale oxidizer particles show faster pressurization rates. Because the majority of gas generation is due to the decomposition or vaporization of the oxide in these reactions, and oxide particles on the nano-scale have shorter heat-up times and smaller length scales for gas diffusion than micron particles, convective burning is greatly enhanced with the nano-scale oxidizer.  相似文献   

9.
The present investigation deals with response of the particle size of aluminum on the reactive sintering of Ti–Al intermetallics and subsequently on their reaction kinetics and densification behavior. Aluminum powders of initial average particle size of 44 μm were milled for various durations in a planetary ball mill to produce average particles sizes of 100, 28 and 7 μm. These aluminum powders of various particle sizes i.e. 100, 28 and 7 μm were mixed with titanium powder of average particles size of 44 μm in the ratio of 1:1 corresponding to the Ti–Al intermetallic composition. The reactive sintering temperatures of the mixtures were determined by DTA and the effect of change in particle Al particle size has been determined for the activation energy ofthe self-propagating reaction. The effect of Al particle size on the sintering was determined by studying density and microstructure.  相似文献   

10.
Pyrotechnical ammonium perchlorate-ultradispersed aluminum compositions were ignited in air with 1.06-μm 3.5-ms-long laser pulses. The reflection coefficients, ignition energy threshold, and ignition delay were measured at various densities of the samples. The peculiarities of the ignition and burning of this composition were examined.  相似文献   

11.
Manjula Sharma 《哲学杂志》2013,93(22):1921-1938
Abstract

In this work, the Al/CNT/CuO nano-thermite samples are prepared by ultrasonic mixing with variable CNT content. The morphology of nano-thermites analysed by electron microscopy revealed that the CNTs are dispersed and there are intimate contacts between fuels (Al and CNT) and oxidiser (CuO) constituents of the nano-thermite. Raman spectroscopy technique is used to analyse the structural integrity of the CNTs in the nano-thermite. The thermite reaction characteristics are evaluated by simultaneous thermogravimetric analysis/differential scanning calorimetry technique. The exothermic enthalpy of the Al/CNT/CuO nano-thermite samples increased with increasing CNT content. The effect of Al particle size and Al/Cu molar ratio variation on the thermite reaction enthalpy is also analysed. The ignition temperature of the thermite reaction is also lowered by 71 °C than that of Al/CuO nano-thermite. The activation energy for thermite reaction of Al/CNT/CuO nano-thermite is also lowered by 23% to that of pure Al/CuO. The residues of the nano-thermites after the thermite reaction at 1010 °C are collected and analysed by the X-ray diffraction.  相似文献   

12.
Using Fickett’s model for reactive compressible flows, i.e., the reactive form of Burgers’ equation, we address the problem of shock induced ignition by a piston in a reactive medium characterized by a 2 step induction-reaction kinetics. Owing to the model’s simplicity, the ignition and acceleration mechanism is explained using the two families of characteristics admitted by the model. The energy release along the particle paths provides the amplification of forward-traveling pressure waves. These waves pre-compress the medium in the induction layer ahead of the reaction zone, therefore changing the induction delays of successive particles. The variation of the induction delay provides the modulation of the amplification of the forward traveling pressure waves by controlling the residence time of the pressure waves in the reaction zone. A closed form analytical solution is obtained by the method of characteristics and high activation energy asymptotics. The acceleration of the reaction zone was found to be proportional to the product of the activation energy, the ratio of the induction to reaction time and the heat release. This finding provides a theoretical justification for the previous use of this non-dimensional number to characterize the ignition regimes observed experimentally in detonations and shock induced ignition phenomena. Numerical simulations are presented and analyzed. Both subsonic and supersonic internal flame propagation are observed, consistent with experiment and previous reactive Euler models.  相似文献   

13.
Pre-ignition is an undesirable ignition event that affects chemical kinetic measurements in chemical reactors. Meanwhile, it appears randomly in engineering systems and is highly relevant to the soft knock or much stronger and detrimental super-knock in modern downsized engines. Currently its origins are still not fully understood. In this study, the role of turbulence in pre-ignition phenomena was experimentally investigated using a novel rapid compression machine. Different turbulent flow fields were achieved through calibrated orifice plates. Stoichiometric isooctane/air mixtures were tested under engine-relevant conditions in a target pressure range of 15–50 bar and a temperature range of 720–860 K. Useful insights into pre-ignition mechanism were obtained by combining instantaneous pressure acquisition with simultaneously recorded high-speed imaging. The experimental results demonstrate that owning to turbulent mixing with colder boundary layers, ignition timing is delayed when compared to ideal homogeneous compression ignition scenarios. However, pre-ignition phenomena can still be observed and become pronounced at lower target pressures with longer ignition delays. Moreover, pre-ignition formation can be characterized by single or multiple spherical flame kernels, distributed discretely inside core mixture or at near-wall regions. Different from the auto-ignition scenarios dominated by the chemical reactivity of test mixture, these pre-ignition flame kernels feature standard deflagration propagation. Finally, a dimensionless scaling analysis shows that pre-ignition formation is closely associated with turbulent length scale and laminar flame thickness.  相似文献   

14.
Heating of a conductive polydisperse powder by electrostatic discharge (ESD) is modelled numerically. Powder packing is described using a discrete element model; powder resistance is defined by geometry of particle contacts and properties of plasma produced by electrical breakdown between neighbour particles. A set of parametric calculations in combination with experimental data is used to determine necessary adjustable model parameters. The model predicts the temperature for each powder particle resulting from its heating by the ESD current. Location and packing of individual particles within the powder affects greatly their achieved temperatures and thus the likelihood of ignition. Consistently with experiments, a trend showing that smaller particles are generally heated to higher temperatures at a given ESD energy is detected for coarser powders; this trend becomes less clear for finer powders with particle sizes less than the breakdown distance given by the Paschen curve in air. Comparison of the experimental data and calculations suggests that the transition from single particle to cloud combustion occurs when the distance between the particles ignited by ESD becomes close to the flame size for the individual burning particle. This distance, inversely proportional to the number of ignited particles, is primarily determined by the ESD energy.  相似文献   

15.
对纳米金属颗粒复合含能材料这一新兴体系的单脉冲激光作用的热动力学过程进行了理论分析. 推导了分散在介质中的纳米金属颗粒吸收脉冲激光能量的瞬时功率密度. 从热分解机理出发对纳米金属铝复合硝化纤维(Al/NC)薄膜吸收脉冲激光能量过程以及伴随着放热化学反应的热点热量传播过程进行了数值模拟,计算了不同质量分数的Al/NC薄膜样品分别在100ps,10ns,25ns脉冲激光作用下的化学反应直径. 计算结果与实验数据相比较,表明了热分解基本符合10ns,25ns脉冲激光引发含能材料反应的机理,但它并不符合100ps 关键词: 热分解 化学反应 脉冲激光 含能材料  相似文献   

16.
开关技术是影响爆炸箔起爆系统可靠作用、微型化、低能化、集成化的关键技术。电爆炸平面开关是利用强脉冲电流使触发极金属桥箔发生电爆炸,产生高温高压等离子体,使爆炸桥区两侧的电极导通。基于微加工技术,采用Al/CuO复合薄膜材料作为触发电极,设计制造了微型平面复合薄膜电爆炸开关。采用扫描电子显微镜、差示扫描量热法和光谱谱线测温研究了触发极Al/CuO复合薄膜的形貌、反应性和电爆炸等离子体温度,通过放电电流测试研究了开关性能。结果表明,在主回路电压2000 V时,开关输出电流峰值约为1938 A,上升时间390 ns,性能优于仅以铜薄膜为触发电极的电爆炸平面开关。  相似文献   

17.
黄雪峰  李盛姬  周东辉  赵冠军  王关晴  徐江荣 《物理学报》2014,63(17):178802-178802
为探索介观尺度下固体燃料微粒的燃烧现象,本文提出采用光镊工具对活性炭微粒进行捕捉、悬浮、定位,再通过激光点燃,研究其着火及扩散燃烧特性.介观尺度燃烧室中,光镊捕捉7.0μm活性炭微粒的最低捕捉功率为3.2 mW,捕捉速率范围为103.7—70.0μm/s;活性炭微粒在静止气流中的最低点火功率为3.2 mW,颗粒的等效粒径、周长、面积和圆形度对最低点火功率影响甚微,点火延迟时间约48 ms,提高点火功率,点火延迟时间缩短,最小点火延迟时间小于6 ms;活性炭在着火后先发生无焰燃烧,紧接着发生有焰燃烧,无焰燃烧的扩散燃烧速率满足粒径平方直线规律,其燃烧速率范围为15.0—8.0μm/s;有焰燃烧的火焰面积和强度随燃烧时间发生闪烁,其闪烁频率约29.1 Hz.对于粒径为3.0μm的活性炭微粒,从加热到完全燃烧殆尽所需时间约0.648 s.结果表明:对于聚焦后的高能激光束点燃活性炭微粒的着火属于联合着火模式,在挥发份析出之前,活性炭非均相着火而发生无焰燃烧,挥发份析出后被点燃发生均相着火,火焰面始终保持圆形.  相似文献   

18.
Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.  相似文献   

19.
Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum (Al) with copper oxide (CuO) was the only mixture to ignite by electrostatic discharge. Under the loose powder conditions of these experiments, the Al–CuO minimum ignition energy (MIE) is 25 mJ and exhibited an electrical conductivity two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.  相似文献   

20.
We consider the propagation of a combustion front resulting from the gasless combustion of a condensed state fuel. The propagation of the front, essentially a premixed laminar flame, is supported by an exothermic reaction subject to possible heat loss through a competitive endothermic reaction. The dynamics of the endothermic process inducing the heat loss strongly depend on the temperature and the local fuel concentration. Through an analysis based on high activation energy, the steady-state values of the final burnt temperature as well as the burning velocity are obtained, and the control parameters are identified. Using a linear perturbation method, we assess the stability of the propagating front and obtain a condition for oscillatory behaviour. The critical parameter values for the transition from steady to oscillatory burning speeds are identified. The results represent a generalization of those obtained by Matkowsky and Sivashinsky to include the effects of heat loss induced by a competitive endothermic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号