首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
Self-excited combustion instabilities in a mesoscale multinozzle array, also referred to as a micromixer-type injector, have been experimentally investigated in a lean-premixed tunable combustor operating with preheated methane and air. The injector assembly consists of sixty identical swirl injectors of 6.5 mm inner diameter, which are evenly distributed across the combustor dump plane. Their flow paths are divided into two groups – inner and outer stages – to form radially stratified reactant stoichiometry for the control of self-excited instabilities. OH PLIF measurements of stable flames reveal that the presence of radial staging has a remarkable influence on stabilization mechanisms, reactant jet penetration/merging, and interactions between adjacent flame fronts. In an inner enrichment case, two outer (leaner) streams merge into a single jet structure, whereas the inner (richer) reactant jets penetrate far downstream without noticeable interactions between neighboring flames. The constructed stability map in the 〈?i, ?o〉 domain indicates that strong self-excited instabilities occur under even split and outer enrichment conditions at relatively high global equivalence ratios. This is attributed to large-scale flame surface deformation in the streamwise direction, as manifested by vigorous detachment/attachment movements. The use of the inner fuel staging method was found, however, to limit the growth of large-amplitude heat release rate fluctuations, because the center flames are securely anchored during the whole period of oscillation, giving rise to a moderate lateral motion. We demonstrate that the collective motion of sixty flames – rather than the individual local flame dynamics – play a central role in the development of limit cycle oscillations. This suggests that the distribution pattern of the injector array, in combination with the radial fuel staging scheme, is the key to the control of the instabilities.  相似文献   

2.
The present experimental investigation demonstrates important trends and offers physical insights into self-excited combustion instabilities in mesoscale multinozzle flames composed of sixty small injectors. Here we focus on the response of a prototypical micromixer-type injector assembly, fabricated using an additive manufacturing technique, in comparison with the behavior of conventional large-scale swirl-stabilized flames. Our results highlight that the development of self-excited instabilities in unconventional mesoscale flames is fundamentally different from that in large-scale swirl flames, in terms of the onset of instabilities, nonlinear modal dynamics, and amplitude/frequency of limit cycle oscillations under the same operating conditions. These differences are attributable to the alteration in local flow/flame structures and the resulting flame-to-flame/flame-wall interaction mechanisms. An integrated analysis of large datasets reveals that the two interacting swirl-stabilized flames tend to couple strongly with a low-frequency L1 mode at about 220 Hz, whereas the sixty-injector small-scale flames are capable of triggering multiple higher-frequency instabilities at ~ 310, ~ 470, and ~ 600 Hz. That is, the use of the micromixer-type injector assembly in a lean-premixed system causes the occurrence of combustion instabilities to shift toward a higher equivalence ratio. However, due to the absence of a large recirculation zone near the primary reaction region, the combustion system equipped with the small-scale multinozzle injectors was found to suffer from lean blowoff phenomena at low equivalence ratio.  相似文献   

3.
Despite significant research, self-excited thermoacoustic oscillations continue to hinder the development of lean-premixed gas turbines, making the early detection of such oscillations a key priority. We perform output-only system identification of a turbulent lean-premixed combustor near a Hopf bifurcation using the noise-induced dynamics generated by inherent turbulence in the fixed-point regime, prior to the Hopf point itself. We model the pressure fluctuations in the combustor with a van der Pol-type equation and its corresponding Stuart–Landau equation. We extract the drift and diffusion terms of the equivalent Fokker–Planck equation via the transitional probability density function of the pressure amplitude. We then optimize the extracted terms with the adjoint Fokker–Planck equation. Through comparisons with experimental data, we show that this approach can enable prediction of (i) the location of the Hopf point and (ii) the limit-cycle amplitude after the Hopf point. This study shows that output-only system identification can be performed on a turbulent combustor using only pre-bifurcation data, opening up new pathways to the development of early warning indicators of thermoacoustic instability in practical combustion systems.  相似文献   

4.
The instability attenuation mechanism of fuel staging was investigated in a CH4/H2 fueled dual-nozzle gas turbine combustor. Fuel staging was implemented using an asymmetry in fuel composition between the two nozzles. The fuel composition of the upper nozzle was varied while keeping that of the lower nozzle constant. Under these conditions, the self-excited and forced responses of fuel-staged flames were analyzed using OH* chemiluminescence imaging, OH planar laser-induced fluorescence, and particle image velocimetry. In the self-excited measurements, although strong combustion instability was exhibited in the symmetric condition, it weakened gradually with increasing asymmetry in fuel composition. The symmetric flame exhibited significant fluctuations in the heat release rate around the flame tip, which acted as the primary cause of driving combustion instability. However, in asymmetric flames, the H2 addition induced phase leads in heat release rate fluctuations at the upper region, which damped combustion instability. Thus, our observations revealed a high correlation between the phase leads and the attenuation of combustion instability. Analyses of the forced responses showed that the heat release rate fluctuations were induced by interactions between the flame and the shedding vortex released from the nozzle tip into the downstream. Although these characteristics of shedding vortices did not depend on the H2 addition, the change in the axial position of the flame caused by the H2 addition induced the relocation of the site, at which the flame interacted with the vortex. Subsequently, it induced phase leads in the heat release rate fluctuations. The phase difference of heat release rate fluctuations between the two flames due to this phase leads enlarged progressively with increasing asymmetry in fuel composition, leading to the attenuation of combustion instability in asymmetric conditions.  相似文献   

5.
Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier–Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various physical mechanisms. This has implications in selecting the operating conditions for such flames and for devising proper control strategies for the avoidance of thermoacoustic instability.  相似文献   

6.
OH*自由基是火焰中主要的激发态自由基之一,它所产生的化学发光可用于描述火焰的结构、拉伸率、氧燃当量比和热释放速率等特征信息,因此被广泛应用于火焰燃烧状态的在线诊断。以甲烷/氧气层流同轴射流扩散火焰作为研究对象,采用GRI-Mech 3.0机理结合OH*自由基生成和淬灭反应进行数值计算,对OH*自由基的二维分布特性进行研究,分析不同区域内OH*自由基的生成路径,并探讨不同氧燃当量比例和不同喷嘴出口尺寸对OH*自由基强度和分布特性的影响。模拟结果与实验研究基本吻合,表明计算模型能够准确描述火焰中OH*自由基的二维分布。结果表明:在甲烷/氧气层流同轴射流扩散火焰中,OH*自由基存在两种不同形态的分布区域,分别由反应CH+O2=OH*+CO和H+O+M=OH*+M生成;随着氧燃当量比提高,OH*自由基的分布区域逐渐向火焰下游扩张,根据其分布形态的变化可以对火焰燃烧状况进行判断;如果OH*自由基仅分布于火焰的上游区域且呈断开形态,则说明火焰处于贫氧燃烧状态。如果OH*分布呈环状形态,则说明火焰处于富氧燃烧状态;相同氧气流量条件下,缩小喷嘴出口的环隙尺寸有助于加强燃料和氧气的化学反应程度,从而使火焰中OH*自由基的摩尔分数显著提高,增强OH*化学发光的辐射强度,提高火焰光谱诊断的准确性。  相似文献   

7.
In can-annular gas turbines, low-frequency thermoacoustic instabilities can arise from cross-talk interactions between neighboring combustors upstream of the first-stage turbine nozzles. In this experimental study, we investigate the influence of non-identical flame transfer functions (FTFs) between adjacent combustors on the development of self-excited thermoacoustic oscillations. To create different FTFs, we use five different swirl nozzles, one with high swirl (HS) and four with low swirl (LS), all with different porosities. We find that, compared with the LS FTFs, the HS FTF exhibits a smaller and flatter gain as well as a smaller phase difference. We attribute this behavior to differences in the flame structure and the stabilization mechanisms, namely an inner shear layer-stabilized diverging front in the HS case versus a detached reaction zone in the presence of a central jet with an outer swirl flow in the LS cases. Using two tunable lean-premixed combustors connected via a cross-talk section, we show that (i) symmetric FTF combinations (HS + HS or LS + LS) produce in-phase interactions, leading to push-push modes, but that (ii) asymmetric FTF combinations (HS + LS) produce out-of-phase interactions, leading to push-pull modes. Phase-resolved visualization of the asymmetric cases reveals that the inner shear layer-stabilized HS flame exhibits large angle fluctuations, whereas the aerodynamically stabilized LS flame is characterized by the periodic emergence of a bow-shaped front and an oval structure. For all the conditions tested, we find that asymmetry in the FTFs leads to either (i) a completely stable state with negligible amplitude or (ii) a mildly unstable state with an amplitude lower than that of the equivalent symmetric cases. These findings highlight the potential of using asymmetric FTFs for passive control of cross-talk-driven thermoacoustic instabilities in can-annular combustors.  相似文献   

8.
对未燃烧的可燃混合气体进行DBD放电,放电后会产生大量的活性粒子,这些活性粒子可以辅助气体燃烧,达到提高燃料燃烧利用率等目的。以DBD激励氩气、甲烷、空气产生的自由基(CH基和OH基)等强化燃烧的关键活性粒子为探索对象,研究DBD放电激励甲烷对滑动弧火焰的影响。为此,采用自主设计的DBD-滑动弧双模式等离子体激励器,利用同轴介质阻挡放电结构对氩气、甲烷、空气混合气进行放电激励,将激励后的氩气、甲烷、空气混合气通入滑动弧端进行点火。固定氩气流量不变,调整空气流量为4.76 L·min-1,并加入甲烷0.5 L·min-1,保证进气通道内氩气与空气-甲烷的气体体积流量比达到Ar∶(CH4+Air)=1∶30,其中空气、甲烷这两种气体达到了化学燃烧当量比φ=1,氩气、甲烷、甲烷混合气体能实现均匀而稳定的放电并燃烧。DBD段放电电压在15~20 kV范围变化,放电频率在6~10 kHz范围变化,滑动弧段的电压和频率分别保持4 kV与10 kHz恒定,通过改变DBD段放电电压和放电频率,用高速光纤光谱仪检测滑动弧火焰中自由基种类及其光谱强度,分析放电参数激励甲烷对火焰中自由基(CH基和OH基)的影响。结果表明,DBD段放电电压及放电频率的增加可以促进火焰内部的偶联反应发生,可有效提升甲烷滑动弧火焰内部的活性粒子含量,其中OH基团、CH基团在燃烧链式化学反应进程中发挥着较为重要的作用。甲烷经过DBD激励后,随放电电压和频率的增加,火焰中OH基、CH基等主要活性粒子都随之增加。DBD放电后,活性粒子的光谱强度增大,特征谱线比单模式更加明显;甲烷经过DBD激励后,火焰组成发生了变化,滑动弧段出口处甲烷燃烧反应更加充分,火焰温度越高越容易产生OH基。与单模式滑动弧相比,双模式放电可有效促进火焰内部的链式化学反应进程,促进燃料燃烧。  相似文献   

9.
10.
稀甲烷/氢气预混湍流传播火焰实验研究   总被引:1,自引:0,他引:1  
本文采用定容湍流燃烧弹获取了稀甲烷/氢气/空气在强湍流条件下的火焰发展历程,研究了湍流火焰在负马克斯坦数条件下的传播特性.结果表明,湍流火焰呈现自相似传播特性,即使在强湍流条件下,湍流传播火焰仍然会受到不稳定性的影响.并且随着马克斯坦数的减小,不稳定性对湍流传播火焰的影响增强。同时,本文获得一种新的湍流燃烧速度拟合公式,包含了负马克斯坦数条件下不稳定性对湍流燃烧速度的影响。  相似文献   

11.
采用叶轮型旋流燃烧器,选取氢气作为燃料添加剂,研究了掺氢比对氨气旋流火焰稳定性的影响,分析了不同旋流数、叶片数、当量比以及预混气总流量条件下,旋流火焰形态变化。测定并分析了不同参数对旋流火焰燃烧极限范围的影响。结果表明,随掺氢比的增大,火焰逐渐由“V”型转化为稳定的“M”型,燃烧反应愈发充分;高旋流数(1.27)或低叶片数(6片)相比低旋流数(0.42)或高叶片数(8片)更有利于旋流火焰的稳定和燃烧的充分进行;相比富燃,贫燃有利于形成稳定的旋流火焰;预混气总流量较大时,火焰高度较高.对于燃烧极限,掺氢比越高,极限范围越大;总流量的变化对贫燃极限影响较小,对富燃极限影响较大;高旋流数(1.27)条件下,燃烧极限范围较大。  相似文献   

12.
This paper presents an assessment of the effects of methane assistance on pulverized biomass swirl flames specifically regarding flow fields and flame structure. Experiments are carried out using a pilot-scale down-fired cylindrical combustion chamber equipped with a swirl burner and biomass/methane fuel mixtures. Studied conditions have an identical thermal output of 40 kW, with the thermal output share of methane gradually decreasing from 50% to 0% while the biomass share (walnut shells) increased from 50% to 100% (self-sustained condition). A detailed flow field characterization of the respective flames is conducted by in-flame, two-dimensional laser Doppler velocimetry measurements. These measurements are complemented by narrow-band flame imaging conducted at two different wavelengths (OH* and CH* radical band heads). Results show that the methane flames have a significant influence on the ignition and the determination of the flame flow field structure, including higher peak and overall velocities, as well as major changes in the ratio of tangential over axial velocity component. Further on, flame attachment of the self-sustained flame can be permanently achieved by the initial, short-term assistance of a methane flame with comparatively low thermal output. These observations are analysed and discussed, where higher measured velocities and overall changes in the flame structure between the self-sustained and the methane-assisted flames are attributed to important local expansion and momentum changes of the combustion gases introduced by the combustion of methane.  相似文献   

13.
One of the main concerns regarding ammonia combustion is its tendency to yield high nitric oxide (NO) emissions. Burning ammonia under slightly rich conditions reduces the NO mole fraction to a low level, but the penalties are poor combustion efficiency and unburnt ammonia. As an alternative solution, this paper reports the experimental investigation of premixed swirl flames fueled with ammonia-hydrogen mixtures under very-lean to stoichiometric conditions. A gas analyzer was used to measure the NO mole fraction in the flame and post flame regions, and it was found that low NO emissions (as low as 100 ppm) in the exhaust were achieved under very lean conditions (? ≈ 0.40). Low NO emission was also possible at higher equivalence ratios, e.g. ? = 0.65, for very large ammonia fuel fractions (XNH3 > 0.90). 1-D flame simulations were performed to elaborate on experimental findings and clarify the observations of the chemical kinetics. In addition, images of OH* chemiluminescence intensity were captured to identify the flame structure. It was found that, for some conditions, the OH* chemiluminescence intensity can be used as a proxy for the NO mole fraction. A monotonic relationship was discovered between OH* chemiluminescence intensities and NO mole fraction for a wide range of ammonia-hydrogen blends (0.40 < ? < 0.90 and 0.25 < XNH3 < 0.90), making it possible to use the low-cost OH* chemiluminescence technique to qualify NO emission of flames fueled with hydrogen-enriched ammonia blends.  相似文献   

14.
针对某支板火焰稳定结构数值研究了二维超音速流动和燃烧规律,提出不同燃料供给方案,比较了采用全氢气、全甲烷和不同比例的混合燃气等情况下的燃烧性能.结果表明:单一燃料时,氢气超燃性能很好,但会出现热量雍塞,而甲烷无法燃烧,两种混合燃料方案均在燃烧室内出现了稳定的火焰,但氧气消耗率不理想,基于上述结论给出了一些提高超燃性能的改进措施.  相似文献   

15.
The occurrence of oscillating combustion and combustion instability has led to resurgence of interest in the causes, mechanisms, suppression, and control of combustion noise. Noise generated by enclosed flames is of greater practical interest but is more complicated than that by open flames, which itself is not clearly understood. Studies have shown that different modes of combustion, premixed and non-premixed, differ in their sound generation characteristics. However, there is lack of understanding of the region bridging these two combustion modes. This study investigates sound generation by partially premixed flames. Starting from a non-premixed flame, air was gradually added to achieve partial premixing while maintaining the fuel flow rate constant. Methane, ethylene, and ethane partially premixed flames were studied with hydrogen added for flame stabilization. The sound pressure generated by methane partially premixed flames scales with M5 compared to M3 for turbulent non-premixed methane flames. Also, the sound pressure generated by partially premixed flames of ethane and ethylene scales as M4.5. With progressive partial premixing, spectra level increases at all frequencies with a greater increase in the high-frequency region compared to the low-frequency region; flames develop a peak and later a constant level plateau in the low frequency region. The partially premixed flames of methane, ethylene, and ethane generate a similar SPL as a function of equivalence ratio when the fuel volume flow rate is matched. However, when fuel mass flow rate is matched, the ethane and ethylene flames produce a similar SPL, which is lower than that produced by the methane flame.  相似文献   

16.
This work presents measurements of acoustically driven flame dynamics in a 42-element, cryogenic oxygen-hydrogen rocket thrust chamber under supercritical injection conditions. The experiment shows self-excited combustion instabilities for certain operating conditions, and this work describes the nature of the flame dynamics driving the acoustic field, as far as it can be ascertained from state-of-the-art optical measurements. Optical access has been realized in the combustion chamber with both fibre-optical probes and a viewing window. The probes collect point-like measurements of filtered OH* radiation. Their signals were used to calculate the gain and phase of intensity oscillations with respect to acoustic pressure for both stable and unstable operating conditions. Through the window, synchronized high-speed imaging of the flame in filtered OH* and blue radiation wavelengths was collected. The 2D flame response was related to the local acoustic pressure to investigate the distributed intensity and phase relationships. The flame response from OH* measurements is in agreement with the theory of Rayleigh. For stable conditions the oscillations of combustion and pressure were out of phase, whereas for an excited chamber 1T mode the oscillations were closely in phase. The integrated Rayleigh index from blue imaging was not consistent with the OH* results. The reason lies in the depth of field captured by this type of imaging, and must be used in a complementary fashion together with OH* imaging. The flame response values and 2D visualization presented in this work are expected to be of value for the validation of numerical modelling of combustion instabilities.  相似文献   

17.
In our previous numerical studies [Nishioka Makihito, Zhenyu Shen, and Akane Uemichi. “Ultra-lean combustion through the backflow of burned gas in rotating counterflow twin premixed flames.” Combustion and Flame 158.11 (2011): 2188–2198. Uemichi Akane, and Makihito Nishioka. “Numerical study on ultra-lean rotating counterflow twin premixed flame of hydrogen–air.” Proceedings of the Combustion Institute 34.1 (2013): 1135–1142]. we found that methane– and hydrogen–air rotating counterflow twin flames (RCTF) can achieve ultralean combustion when backward flow of burned gas occurs due to the centrifugal force created by rotation. In this study, we investigated the mechanisms of ultralean combustion in these flames by the detailed numerical analyses of the convective and diffusive transport of the main species. We found that, under ultralean conditions, the diffusive transport of fuel exceeds its backward convective transport in the flame zone, which is located on the burned-gas side of the stagnation point. In contrast, the relative magnitudes of diffusive and convective transport for oxygen are reversed compared to those for the fuel. The resulting flows for fuel and oxygen lead to what we call a ‘net flux imbalance’. This net flux imbalance increases the flame temperature and concentrations of active radicals. For hydrogen–air RCTF, a very large diffusivity of hydrogen enhances the net flux imbalance, significantly increasing the flame temperature. This behaviour is intrinsic to a very lean premixed flame in which the reaction zone is located in the backflow of its own burned gas.  相似文献   

18.
We have investigated the downward flame spread over a thin solid fuel. Hydrogen, methane, or propane, included in the gaseous product of pyrolysis reaction, is added in the ambient air. The fuel concentration is kept below the lean flammability limit to observe the partially premixing effect. Both experimental and numerical studies have been conducted. Results show that, in partially premixed atmospheres, both blue flame and luminous flame regions are enlarged, and the flame spread rate is increased. Based on the flame index, a so-called triple flame is observed. The heat release rate ahead of the original diffusion flame is increased by adding the fuel, and its profile is moved upstream. Here, we focus on the heat input by adding the fuel in the opposed air, which could be a direct factor to intensify the combustion reaction. The dependence of the flame spread rate on the heat input is almost the same for methane and propane/air mixtures, but larger effect is observed for hydrogen/air mixture. Since the deficient reactant in lean mixture is fuel, the larger effect of hydrogen could be explained based on the Lewis number consideration. That is, the combustion is surely intensified for all cases, but this effect is larger for lean hydrogen/air mixture (Le < 1), because more fuel diffuses toward the lean premixed flame ahead of the original diffusion flame. Resultantly, the pyrolysis reaction is promoted to support the higher flame spread rate.  相似文献   

19.
Laminar flame speeds of premixed jet fuel/air with the addition of hydrogen, methane and ethylene are measured in a constant-volume bomb at an initial temperature of 420 K, initial pressure of 3 atm, equivalence ratios of 0.6–1.5 and gas mass fractions of 0–50%. The experimental results show that the addition of hydrogen and ethylene can significantly improve the laminar flame speed of the liquid jet fuel, while the addition of methane shows a weak inhibitory effect, and these effects are relatively remarkable on the fuel-rich conditions. The laminar flame speed of the dual fuels/air is linearly dependent on the additional gas mass fraction. A kinetic analysis indicates that the gas addition causes both thermodynamic and chemical kinetic effects on the laminar flame speed of the dual fuels/air. The adiabatic temperature increases and decreases with the addition of hydrogen/ethylene and methane, respectively. A sensitivity analysis shows that the reactions concerning to the H, CH3 and C2H3 radicals become significant with the addition of hydrogen, methane and ethylene, respectively, and that the different values of the rate of product (ROP) of these species via the critical reactions lead to a different promotional or inhibitory effect on the fuel-rich and fuel-lean conditions.  相似文献   

20.
Ammonia appears a promising hydrogen-energy carrier as well as a carbon-free fuel. However, there remain limited studies for ammonia combustion especially under turbulent conditions. To that end, using the spherically expanding flame configuration, the turbulent flame speeds of stoichiometric ammonia/air, ammonia/methane and ammonia/hydrogen were examined. The composition of blends studied are currently being investigated for gas turbine application and are evaluated at various turbulent intensities, covering different kinds of turbulent combustion regimes. Mie-scattering tomography was employed facilitating flame structure analysis. Results show that the flame propagation speed of ammonia/air increases exponentially with increasing hydrogen amount. It is less pronounced with increasing methane addition, analogous to the behavior displayed in the laminar regime. The turbulent to laminar flame speed ratio increases with turbulence intensity. However, smallest gains were observed at highest hydrogen content, presumably due to differences in the combustion regime, with the mixture located within the corrugated flamelet zone, with all other mixtures positioned within the thin reaction zone. A good correlation of the turbulent velocity based on the Karlovitz and Damköhler numbers is observable with the present dataset, as well as previous experimental measurements available in literature, suggesting that ammonia-based fuels may potentially be described following the usual turbulent combustion models. Flame morphology and stretch sensitivity analysis were conducted, revealing that flame curvature remains relatively similar for pure ammonia and ammonia-based mixtures. The wrinkling ratio is found to increase with both increasing ammonia fraction and turbulent intensity, in good agreement with measured increases in turbulent flame speed. On the other hand, in most cases, the flame stretch effect does not change significantly with increasing turbulence, whilst following a similar trend to that of the laminar Markstein length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号