首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current-voltage (I-V) characteristics of Al/SiO2/p-Si metal-insulator-semiconductor (MIS) Schottky diodes were measured at room temperature. In addition the capacitance-voltage (C-V) and conductance-voltage (G-V) measurements are studied at frequency range of 10 kHz-1 MHz. The higher value of ideality factor of 3.25 was attributed to the presence of an interfacial insulator layer between metal and semiconductor and the high density of interface states localized at Si/SiO2 interface. The density of interface states (Nss) distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) at room temperature for the Schottky diode on the order of ≅4 × 1013 eV−1 cm−2. These high values of Nss were responsible for the non-ideal behaviour of I-V and C-V characteristics. Frequency dispersion in C-V and G-V can be interpreted only in terms of interface states. The Nss can follow the ac signal especially at low frequencies and yield an excess capacitance. Experimental results show that the I-V, C-V and G-V characteristics of SD are affected not only in Nss but also in series resistance (Rs), and the location of Nss and Rs has a significant on electrical characteristics of Schottky diodes.  相似文献   

2.
The energy distribution profile of the interface states (Nss) of Al/TiO2/p-Si (MIS) structures prepared using the sol-gel method was obtained from the forward bias current-voltage (I-V) characteristics by taking into account both the bias dependence of the effective barrier height (?e) and series resistance (Rs) at room temperature. The main electrical parameters of the MIS structure such as ideality factor (n), zero-bias barrier height (?b0) and average series resistance values were found to be 1.69, 0.519 eV and 659 Ω, respectively. This high value of n was attributed to the presence of an interfacial insulator layer at the Al/p-Si interface and the density of interface states (Nss) localized at the Si/TiO2 interface. The values of Nss localized at the Si/TiO2 interface were found with and without the Rs at 0.25-Ev in the range between 8.4×1013 and 4.9×1013 eV−1 cm−2. In addition, the frequency dependence of capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the structures have been investigated by taking into account the effect of Nss and Rs at room temperature. It can be found out that the measured C and G/ω are strongly dependent on bias voltage and frequency.  相似文献   

3.
Electronic and interface state distribution properties of Ag/p-Si Schottky diode have been investigated. The diode indicates non-ideal current-voltage behavior with an ideality factor greater than unity. The capacitance-voltage (C-V) characteristic is linear in reverse bias indicating rectification behavior and charge density within depletion layer is uniform. From I-V and C-V characteristics, junction parameters such as diode ideality factor and barrier height were found as 1.66 and ?B(I-V) = 0.84 eV (?B(C-V) = 0.90 eV), respectively. The interface state density Nss and relaxation time τ of the Schottky diode were determined by means of Schottky capacitance spectroscopy method. The results show the presence of thin interfacial layer between the metal and semiconductor.  相似文献   

4.
Metal-oxide-semiconductor (MOS) capacitors incorporating hafnium dioxide (HfO2) dielectrics were fabricated and investigated. In this work, the electrical and interfacial properties were characterized based on capacitance-voltage (C-V) and current-voltage (I-V) measurements. Thereafter the current conduction mechanism, electron effective mass (m*), mean density of interface traps per unit area and energy (), energy distribution of interface traps density and near-interface oxide traps density (NNIOT) were studied in details. The characterization reveals that the dominant conduction mechanism in the region of high temperature and high field is Schottky emission. The mean density of interface traps per unit area and energy is about 6.3 × 1012 cm−2 eV−1 by using high-low frequency capacitance method. The maximum Dit is about 7.76 × 1012 cm−2 eV−1 located at 0.27 eV above the valence band.  相似文献   

5.
Interface properties of BCN/GaN metal-insulator-semiconductor (MIS) structures are investigated by X-ray photoelectron spectroscopy (XPS) and capacitance versus voltage (C-V) characteristics measurements. The BCN/GaN samples are fabricated by in situ process consisting of plasma treatment and deposition of BCN film in the plasma-assisted chemical vapor deposition (PACVD) apparatus. XPS measurement shows that the oxide formation at the BCN/GaN interface is suppressed by nitrogen (N2) and hydrogen (H2) plasma treatment. The interface state density is estimated from C-V characteristics measured at 1 MHz using Terman method. The minimum interface state density appears from 0.2 to 0.7 eV below the conduction band edge of GaN. The minimum value of the interface state density is estimated to be 3.0 × 1010 eV−1 cm−2 for the BCN/GaN structure with mixed N2 and H2 plasma treatment for 25 min. Even after annealing at 430 °C for 10 min, the interface state density as low as 6.0 × 1010 eV−1 cm−2 is maintained.  相似文献   

6.
The electrical and interface state properties of Au/perylene-monoimide (PMI)/n-Si Schottky barrier diode have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at room temperature. A good rectifying behavior was seen from the IV characteristics. The series resistance (Rs) values were determined from IV and CV characteristics and were found to be 160 Ω and 53 Ω, respectively. The barrier height (Φb) of Au/PMI/n-Si Schottky diode was found to be 0.694 eV (IV) and 0.826 eV (CV). The ideality factor (n) was obtained to be 4.27 from the forward bias IV characteristics. The energy distribution of interface state density (Nss) of the PMI-based structure was determined, and the energy values of Nss were found in the range from Ec ? 0.508 eV to Ec ? 0.569 eV with the exponential growth from midgap toward the bottom of the conduction band. The values of the Nss without Rs are 2.11 × 1012 eV?1 cm?2 at Ec ? 0.508 eV and 2.00 × 1012 eV?1 cm?2 at Ec ? 0.569 eV. Based on the above results, it is clear that modification of the interfacial potential barrier for metal/n-Si structures has been achieved using a thin interlayer of the perylene-monomide.  相似文献   

7.
p-CuIn0.7Ga0.3(Se(1?x)Tex)2 type thin films were synthesized by thermal evaporation method on Mo coated glass substrates. To obtain Al/CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo Schottky diode structure for two compositions of x = 0.0 and 0.6, Al metal was evaporated on upper surface of CuIn0.7Ga0.3(Se(1?x)Tex)2 as a front contact. Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo structures were annealed temperature range from 150 °C to 300 °C for 10 min under vacuum. The electrical and dielectrical properties of Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2 (CIGSeTe) Schottky barrier diodes (SBD) have been investigated. Capacitance–Voltage (CV) characteristics, Conductance–Voltage (G/wV) characteristics and interface state density were studied in order to obtain electrical and dielectrical parameters. The effects of interface state density (Nss), series resistance (Rs), the dielectric constant (?′), dielectric loss (?″), dielectric loss tangent (tan δ), ac electrical conductivity (σac) and carrier doping densities were calculated from the CV and G/wV measurements and plotted as a function of annealing temperature. It was observed that the values of carrier doping density NA for annealing temperature at 150 °C decreased from 2.83 × 10+15 cm?3 to 2.87 × 10+14 cm?3 with increasing Te content from x = 0.0 to 0.6. The series resistance for x = 0.0 found to be between 10 and 75 Ω and between 50 and 230 Ω for x = 0.6 in the range of annealing temperature at 150–300 °C.  相似文献   

8.
The effects of surface preparation and illumination on electric parameters of Au/InSb/InP(100) Schottky diode were investigated, in the later diode InSb forms a fine restructuration layer allowing to block In atoms migration to surface. In order to study the electric characteristics under illumination, we make use of an He-Ne laser of 1 mW power and 632.8 nm wavelength. The current-voltage I(VG), the capacitance-voltage C(VG) measurements were plotted and analysed. The saturation current Is, the serial resistance Rs and the mean ideality factor n are, respectively, equal to 2.03 × 10−5 A, 85 Ω, 1.7 under dark and to 3.97 × 10−5 A, 67 Ω, 1.59 under illumination. The analysis of I(VG) and C(VG) characteristics allows us to determine the mean interfacial state density Nss and the transmission coefficient θn equal, respectively, to 4.33 × 1012 eV−1 cm−2, 4.08 × 10−3 under dark and 3.79 × 1012 eV−1 cm−2 and 5.65 × 10−3 under illumination. The deep discrete donor levels presence in the semiconductor bulk under dark and under illumination are responsible for the non-linearity of the C−2(VG) characteristic.  相似文献   

9.
The temperature dependence of capacitance–voltage (CV) and conductance–voltage (G/wV) characteristics of Al/HfO2/p-Si metal-oxide-semiconductor (MOS) device has been investigated by considering the effect of series resistance (Rs) and interface state density (Nss) over the temperature range of 300–400 K. The CV and G/wV characteristics confirm that the Nss and Rs of the diode are important parameters that strongly influence the electric parameters in MOS device. It is found that in the presence of series resistance, the forward bias CV plots exhibits a peak, and its position shifts towards lower voltages with increasing temperature. The density of Nss, depending on the temperature, was determined from the (CV) and (G/wV) data using the Hill–Coleman Method. Also, the temperature dependence of dielectric properties at different fixed frequencies over the temperature range of 300–400 K was investigated. In addition, the electric modulus formalisms were employed to understand the relaxation mechanism of the Al/HfO2/p-Si structure.  相似文献   

10.
The forward bias current-voltage (I-V) characteristics of Al/p-Si (MS) Schottky diodes with native insulator layer were measured in the temperature range of 80-300 K. The obtained zero bias barrier height ΦB0(I-V), ideality factor (n) and series resistance (Rs) determined by using thermionic emission (TE) mechanism show strong temperature dependence. There is a linear correlation between the ΦB0(I-V) and n because of the inhomogeneties in the barrier heights (BHs). Calculated values from temperature dependent I-V data reveal an unusual behaviour such that the ΦB0 decreases, as the n and Rs values are increasing with decreasing absolute temperature, and these changes are more pronounced especially at low temperatures. Such temperature dependence of BH is contradictory with the reported negative temperature coefficient of the barrier height. In order to explain this behaviour we have reported a modification in the expression reverse saturation current Io including the n and the tunnelling factor (αΧ1/2δ) estimated to be 15.5. Therefore, corrected effective barrier height Φbef.(I-V) versus temperature has a negative temperature coefficients (α = −2.66 × 10−4 eV/K) and it is in good agreement with negative temperature coefficients (α = −4.73 × 10−4 eV/K) of Si band gap. In addition, the temperature dependent energy distribution of interface states density Nss profiles was obtained from the forward bias I-V measurements by taking into account the bias dependence of the Φe and n. The forward bias I-V characteristics confirm that the distribution of Nss, Rs and interfacial insulator layer are important parameters that the current conduction mechanism of MS Schottky diodes.  相似文献   

11.
The forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) have been investigated at room temperature by taking the interface states (Nss) and series resistance (Rs) effects into account. The voltage dependent profiles of resistance (Ri) were obtained from both the I-V and C/G-V measurements by using Ohm’s Law and Nicollian methods. The obtained values of Ri with agreement each other especially at sufficiently high bias voltages which correspond the value of Rs of the diode. Therefore, the energy density distribution profile of Nss was obtained from the forward bias I-V data taking the bias dependence of the effective barrier height (BH) Φe and Rs into account. The high value of ideality factor (n) was attributed to high density of Nss and interfacial polymer layer at metal/semiconductor (M/S) interface. In order to examine the frequency dependence of some of the electrical parameters such as doping donor concentration (ND), Φe, Rs and Nss values, C-V and G/ω-V measurements of the diode were performed at room temperature in the frequency range of 50 kHz-5 MHz. Experimental results confirmed that the Nss, Rs and interfacial layer are important parameters that influence electrical characteristics of SBD.  相似文献   

12.
Experimental study of dc and ac transport properties of CuInSe2/ZnO heterostructure is presented. The current-voltage (I-V) and frequency dependent capacitance (C-f) characteristics of CuInSe2/ZnO heterostructure were investigated in the temperature range 160-393 K. The heterostructure showed non-ideal behavior of I-V characteristics with an ideality factor of 3.0 at room temperature. Temperature dependent dc conductivity studies exhibited Arrhenius type behavior and revealed the presence of trap level. The C−2-V plot measured at frequency 50 kHz had shown non-linear behavior. An increase in capacitance with temperature was observed. The capacitance-frequency characteristics exhibited a transition between low frequency and the high frequency capacitance. As the temperature was lowered the transition occurred at lower frequencies. The frequency and temperature dependent device capacitance had shown a defect state having activation energy of 108 meV.  相似文献   

13.
A study on interface states density distribution and characteristic parameters of the In/SiO2/p-Si (MIS) capacitor has been made. The thickness of the SiO2 film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 Å. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 Ω and 0.592 eV, respectively. The energy distribution of the interface state density Dit was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44×1013 eV−1 cm−2 in 0.329-Ev eV to 1.11×1013 eV−1 cm−2 in 0.527-Ev eV at room temperature. Furthermore, the values of interface state density Dit obtained by the Hill-Coleman method from the C-V characteristics range from 52.9×1013 to 1.11×1013 eV−1 cm−2 at a frequency range of 30kHz-1 MHz. These values of Dit and Rs were responsible for the non-ideal behaviour of I-V and C-V characteristics.  相似文献   

14.
The frequency dependent electrical properties of Ag/n-CdO/p-Si structure has been investigated using capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics in the frequency range 10 kHz–1 MHz in the room temperature. The increase in capacitance at lower frequencies is observed as a signature of interface states. The presence of the interfaces states (NSS) is also evidenced as a peak in the capacitance–frequency characteristics. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C–V and G/ω–V measurements and plotted as functions of voltage and frequency. The distribution profile of RS–V gives a peak in the depletion region at low frequencies and disappears with increasing frequencies. The values of interface state densities and series resistance from capacitance–voltage-frequency (C–V-f) and conductance–voltage-frequency (G/ω–V-f) measurements were obtained in the ranges of 1.44×1016–7.59×1012 cm?2 eV?1 and 341.49–8.77 Ω, respectively. The obtained results show that the C–V-f and G/ω–V-f characteristics confirm that the interface states density (NSS) and series resistance (RS) of the diode are important parameters that strongly influence the electrical parameters in Ag/n-CdO/p-Si structures.  相似文献   

15.
The capacitance–voltage–frequency (CVf) and conductance–voltage–frequency (G/wVf) characteristics of Al/perylene/p-Si Schottky barrier diodes (SBDs) fabricated with spin coating system have been investigated in the frequency range of 30 kHz–2 MHz at room temperature. In order to elucidate the electrical characteristics of SBDs with perylene interface, the voltage and frequency dependent series resistance (Rs), frequency dependent density distribution profile of interface state (Nss) were obtained. The measurements of C and G/w were found to be strongly dependent on bias voltage and frequency for Al/perylene/p-Si SBDs. For each frequency, the RsV plot gives a peak, decreasing with increasing frequencies. Also, it has been shown that the interface states density exponentially decreases with increasing frequency. The CVf and G/wVf characteristics confirm that the Nss and Rs of the diode are important parameters that strongly influence the electric parameters in metal/polymer/semiconductor (MPS) structure.  相似文献   

16.
The forward and reverse bias current–voltage (IV), capacitance/conductance–voltage (C/GV) characteristics of the fabricated Au/PVA (Bi-doped)/n-Si photodiode have been investigated both in dark and under 250 W illumination intensity at room temperature. The energy density distribution profile of Nss was extracted from the forward bias IV measurements by taking the voltage dependence of effective barrier height (Φe) and Rs for photodiode both in dark and under 250 W illumination cases. The exponential growth of the Nss from midgap toward the bottom of the conductance band is very apparent for two cases. The obtained high value of n and Rs were attributed to the particular distribution of Nss at metal/PVA interface, surface and fabrication processes, barrier inhomogeneity of interfacial polymer layer and the form of barrier height at M/S interface. While the values of C and G/w increase Rs and Rsh decrease under illumination, due to the illumination induced electron–hole pairs in depletion region. The voltage dependent Nss profile was also obtained from the dark and illumination capacitance at 1 MHz and these values of Nss are in good agreement. In addition, the fill factor (FF) under 250 W illumination level was found as 28.5% and this value of FF may be accepted sufficiently high. Thus, the fabricated Au/PVA (Bi-doped)/n-Si structures are more sensitive to light, proposing them as a good candidate as a photodiode or capacitance sensor for optoelectronic applications in modern electronic industry.  相似文献   

17.
The effects of interfacial insulator layer, interface states (Nss) and series resistance (Rs) on the electrical characteristics of Au/n-Si structures have been investigated using forward and reverse bias current-voltage (I-V) characteristics at room temperature. Therefore, Au/n-Si Schottky barrier diodes (SBDs) were fabricated as SBDs with and without insulator SnO2 layer to explain the effect of insulator layer on main electrical parameters. The values of ideality factor (n), Rs and barrier height (ΦBo) were calculated from ln(I) vs. V plots and Cheung methods. The energy density distribution profile of the interface states was obtained from the forward bias I-V data by taking bias dependence of ideality factor, effective barrier height (Φe) and Rs into account for MS and MIS SBDs. It was found that Nss values increase from at about mid-gap energy of Si to bottom of conductance band edge of both SBDs and the MIS SBD’s Nss values are 5-10 times lower than those of MS SBD’s. An apparent exponential increase from the mid-gap towards the bottom of conductance band is observed for both SBDs’ (MS and MIS) interface states obtained without taking Rs into account.  相似文献   

18.
In this paper, nitridation process of GaAs (1 0 0) substrates was studied in-situ using X-ray photoelectron spectroscopy (XPS) and ex-situ by means of electrical method I-V and photoluminescence surface state spectroscopy (PLS3) in order to determine chemical, electrical and electronic properties of the elaborated GaN/GaAs interfaces.The elaborated structures were characterised by I-V analysis. The saturation current IS, the ideality factor n, the barrier height ΦBn and the serial resistance RS are determined.The elaborated GaN/GaAs structures are also exhibited a high PL intensity at room temperature. From the computer-aided analysis of the power-dependent PL efficiency measurements (PLS3 technique), the value of the interface state density NSS(E) close to the mid-gap was estimated to be in the range of 2-4 × 1011 eV−1 cm−2, indicating a good electronic quality of the obtained interfaces.Correlation among chemical, electronic and electrical properties of the GaN/GaAs interface was discussed.  相似文献   

19.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

20.
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO2 films and the effects of structural and native defects of the ZrO2 films on the electrical and dielectric properties were investigated. For preparing ZrO2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O2 atmosphere with/without UV light irradiation (λ = 193 nm, Deep UV lamp). The ZrO2(∼12 nm) films on Pt(∼100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage (C-V) and current-voltage (I-V) measurements were carried out on MIM structures. ZrO2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号