首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermolecular interaction between poly(methyl methacrylate) (PMMA) and polystyrene (PS) intetrahydrofuran (THF) and N,N'-dimethyl formamide (DMF) solvents was studied at 28℃ using a dilute solution viscometrymethod. Solvent is believed to play a key role in characterizing the viscosity behavior of the polymer solution. The intrinsicviscosity and viscosity interaction parameter were experimentally measured for the binary (solvent/polymer) and for theternary systems in two solvents. The compatibility of the polymer mixture was discussed in terms of the sign of △b_m. Theresults show that the compatibility of PMMA/PS blend in DMF is larger than that in THF.  相似文献   

2.
Irradiation crosslinking of semi-crystalline polyamides was performed by high energy electronswith various dosages. It is known that the melting behavior of the polymers after irradiation is acomplex phenomenon. In company with the wide angle X-ray diffraction and DSC data of irradiatedand unirradiated polyamides it is possible to develop the local order and perfection of the crystallinitiesslightly which resulted from introduction of intermolecular crosslinking in amorphous region, incl-uding in amorphous-crystalline interface and crystalline defect regions due to irradiation. It canbe explained that slight increase of melting temperature (T_m) and heat of fusion (△H_f) with increasingdosage for both of higher crystallinity nylon 4 and nylon 6. For irradiated lower crystallinity nylons,in contrast, the T_m and △H_f decrease obviously with increasing dosage. In this case, radiation cross-linking "freeze in" the pre-existing morphology, and then the prevention for reorganization duringheating is a dominant effect. The T_m from the second melting for all of the samples were depressed,corresponding with Flory theory. Therefore the crosslinks imposed on the molecules restrainedthe molecular mobility, and that not only depresses the crystallinity but also increases the imperfec-tion of crystallites when the radiated polymer melted and then recrystallized. These are also reflectedin the depression of heat and entropy of fusion as well as the appearance of double melting peakson the DSC thermograms.  相似文献   

3.
Dilute solution viscosity behavior of three water-soluble polymer mixtures has been studied at 20 °C. The ternary systems assayed are distilled water/sodium carboxymethylcellulose (CMC)/polyacrylamide (PAM), distilled water/methylcellulose (MC)/CMC, and distilled water/polyvinylpyrrolidone (PVP)/MC. The intrinsic viscosity and the viscometric interaction parameters have been determined for the binary (distilled water/polymer) and ternary (distilled water/polymer1/polymer2) systems. Degree of compatibility of these polymer systems was estimated on the basis of five criteria: (i) the sign of Δbm, (ii) the sign of Δbm, (iii) the sign of Δ[η]m, (iv) sign of thermodynamic parameter α, and (v) the sign of modified thermodynamic parameter β. Based on the sign convention involved in these criteria, compatibility/miscibility was observed in CMC/PAM and MC/CMC systems and incompatibility/immiscibility in PVP/MC system. The FTIR analyses also support the obtained results. The miscibility/compatibility of all these systems is in accordance with the interactions between the unlike polymer chains rather than the polymer-solvent interactions.  相似文献   

4.
In this brief review article some aspects of the thermodynamics of polymer mixtures are discussed, mainly based on the author's research. The studies of poly (methyl methacrylate)/chlorinated polyethylene (CPE), poly (butyl acrylate)/CPE and CPE/CPE (different chlorine content) mixture verify the "dissimilarity" and "similarity" principles for predicting miscibility of polymer mixtures. The sign of heat of mixing of oligomeric analogues is not sufficient in predicting the miscibility. The Flory equation of state theory has been applied to simulate the phase boundaries of polymer mixtures. The empirical entropy parameter Q_(12) plays an important role in the calculation, this reduces the usefulness of the theory. With energy parameter X_(12)≠0 and Q_(12)≠0 the spinodals so calculated are reasonable compared to experiments. A hole model was suggested for the statistics of polymer mixtures. The new hole theory combines the features of both the Flory equation of state theory and the Sanchez lattice fluid theory and can be reduced to them under some conditions.  相似文献   

5.
The intermolecular interactions between poly(vinyl chloride) (PVC) and poly(vinyl acetate) (PVAc) in tetrahydrofuran (THF), methyl ethyl ketone (MEK) and N,N-dimethylformamide (DMF) were thoroughly investigated by the viscosity measurement. It has been found that the solvent selected has a great influence upon the polymer-polymer interactions in solution. If using PVAc and THF, or PVAc and DMF to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+THF) or (PVAc+DMF) is less than in corresponding pure solvent of THF or DMF. On the contrary, if using PVAc and MEK to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+MEK) is larger than in pure solvent of MEK. The influence of solvent upon the polymer-polymer interactions also comes from the interaction parameter term Δb, developed from modified Krigbaum and Wall theory. If PVC/PVAc blends with the weight ratio of 1/1 was dissolved in THF or DMF, Δb<0. On the contrary, if PVC/PVAc blends with the same weight ratio was dissolved in MEK, Δb>0. These experimental results show that the compatibility of PVC/PVAc blends is greatly associated with the solvent from which polymer mixtures were cast. The agreement of these results with differential scanning calorimetry measurements of PVC/PVAc blends casting from different solvents is good.  相似文献   

6.
A poly (vinyichloride-diethyl maleate) copolymer has been fractionated by repeated precipitation method. All fractions and the unfractionated sample have been characterized by viscometry, dynamic osmometry, Zimm static osmometry, light scattering and gel permeation chromatography. After correction for polydispersity, a [η]~M relationship for monodisperse polymer solutions has been obtained:[η]=1.99×10~(-3)M~(0.87) (ml/g, at 25℃, in cyclohcxanone)For the copolymer solution in THF, the second virial coefficient A_2 decreases as the molecular weight increases. The relationship isA_2=2 slope ((?)_n RT)~(-1/2).  相似文献   

7.
Oxidative polycondensation of 3-((2-phenylhydrazono)methyl)phenol (3-PHMP), a new m-substituted poly(phenoxy-imine), was studied using oxidants such as sodium hypochlorite, air (O2) and hydrogen peroxide in an aqueous alkaline medium under various polymerization conditions. The macromolecular structure and optical properties of the polymer were characterized with elemental analysis, Size Exclusion Chromatography (SEC), Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (NMR), absorption and fluorescence spectroscopy techniques. As a result of fluorescence measurement, the fluorescence lifetime of poly(3-PHMP) in DMF was calculated as 2.88 ns (χ2= 1.12). An electrochemical property the monomer and polymer were also studied using Cyclic Voltammetry (CV) technology. According to the CV measurements, the electrochemical band gaps (Eg) of 3-PHMP and poly(3-PHMP) were found to be 2.64 and 1.94 eV, respectively. Electrical conductivity of the polymer was measured by the four-point probe technique. The electrical conductivity of poly(3-PHMP) was found to be ~3.2 × 10?2S/cm. Thermo Gravimetric Analysis (TGA) revealed poly(3-PHMP) to be stable against thermo-oxidative decomposition. In addition, the in vitro antimicrobial activities of the synthesized compounds were tested on various microorganisms.  相似文献   

8.
We investigated the chemical fixation of carbon dioxide (CO 2) to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer to polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl)methyl methacrylate‐co‐styrene] [poly(DOMA‐co‐St)] from the addition of CO 2 to poly(glycidyl methacrylate‐co‐styrene) [poly(GMA‐co‐St)], quaternary ammonium salts showed good catalytic activity at mild reaction conditions. The CO 2 addition reaction followed pseudo first‐order kinetics with the concentration of poly(GMA‐co‐St). In order to expand the applications of the CO 2 fixed copolymer, polymer blends of this copolymer with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) were cast from N,N′‐dimethylformamide (DMF) solution. Miscibility of blends of poly(DOMA‐co‐St) with PMMA or PVC have been investigated both by differential scanning calorimetry (DSC) and visual inspection of the blends, and the blends were miscible over the whole composition ranges. The miscibility behaviors were also discussed in terms of FT‐IR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
 本文用激光光散射方法研究了具有特殊相行为[(低临界溶解温度(LCST),高临界溶解温度(UCST)共存]共混体系羧化聚苯醚和聚苯乙烯在UCST域内的不稳相分离初期分子量对动力学参数的影响。结果表明:相分离初期动力学过程与Cahn理论吻合;随着分子量增加,表现扩散系数Dapp明显减小;该体系的表现扩散系数为10-14 cm2s-1数量级。deGennes管子模型可很好地描述不稳相分离初期大分子扩散行为。  相似文献   

10.
N,N-Dimethylformamide (DMF)/H2O mixtures were used as solvents to fabricate azo polyelectrolyte (PEAPH)/poly(diallyldimethyl ammonium chloride)(PDAC) self-assembled multilayers with the layer-by-layer electrostatic adsorption technique. PEAPH is a copolymer of acrylic acid and azobenzene-containing acrylate. The effect of the ratio of DMF to water on the multilayer growth, structure and surface morphology was studied in some details. Results show that DMF/H2O mixtures are proper media for PEAPH/PDAC multilayer fabrication. The ratio of DMF to water in the mixture has significant influence on the multilayer structure and surface morphology. With the increase of DMF content, the multilayer thickness has a better linear growth relationship with the bilayer number, and the multilayer surface becomes smoother. Moreover, azo chromophores show less H-aggregation when the multilayers are fabricated from DMF/H2O mixtures with higher DMF contents. These studies demonstrate that using organic solvent and water mixtures is an effective way to control the multilayer construction by adjusting the media properties. This method can be applied to multilayer fabrication of other water-insoluble polyelectrolytes. __________ Translated from Acta Polymerica Sinica, 2005, (4) (in Chinese)  相似文献   

11.
Poor compatibility was the major drawback of polymer mixtures when used as DNA separation media. Using poly(ethylene oxide)‐b‐poly(N, N‐dimethylacrylamide) (PEO44b‐PDMA88) and PEO (Mw: 1.3 MDa) as an example, we demonstrated the concept that the compatibility was significantly improved when mixing a homopolymer with its copolymer. Laser light scattering indicated that the major interaction between PEO and PEO‐b‐PDMA in dilute solution was the weak hydrodynamic interaction, which showed almost no effect on the viscosity and the static scattering pattern. In semidilute or concentrated solution, viscosity measurement also suggested good compatibility between the two components. When tested as DNA separation medium by CE, the viscosity of the mixture was extremely low, only 5 cP for 5.0 m/v% PEO‐b‐PDMA+0.1 m/v% PEO at 25°C. The performance on DNA separation could be tuned by varying the concentration of each component as well as the component ratio. Good separation on both dsDNA and ssDNA was achieved.  相似文献   

12.
The melting behavior of poly(ethylene-alt-tetrafluoroethylene) γ-irradiated in air and vacuumwas studied by DSC. From the results of DSC and density measurements the equilibrium heat offusion, △AH_(III)~o, and the density of the amorphous phase, ρ_α, of the polymer were estimated as 172J/gand 1.63g/cm~3 respectively. Thereby thc degree of crystallinity of this copolymer can be evaluatedby both density and calorimetric methods. The crystal structure was damaged gradually and eventuallycompletely destroyed with the increase in radiation dose from 0.3 to 900 Mrads. Exclusion of airwas advantageous in lessening the damage of thc crystal while increase in the degree of vacuum favoredthe formation of crosslinks. Small peaks appearing both on the DSC endotherm (600K) and onthe exotherm (540K) resulted from the presence of small amount of tetrafluoroethylene blocks alongthe main chain of poly(ethylener-alt-tetrafluoroethylene).  相似文献   

13.
The effect of temperature and solvent on polymer tacticity in free‐radical polymerization of styrene and methyl methacrylate was studied by 13C and 1H NMR, respectively. Polystyrene shows a mild syndiotactic tendency (Pm = 0.36 ± 0.02) that is independent of temperature over a wide range (?10 to 120 °C), while poly(methyl methacrylate) shows a stronger syndiotactic tendency (Pm = 0.17 ± 0.01 at 30 °C) that decreases as temperature is increased (Pm = 0.22 ± 0.02 at 80 °C). None of the polymerization solvents studied (bulk, THF, DMF, DMSO, acetonitrile, and acetone) had a significant effect on polymer tacticity in either system. The triad fractions of both polymers showed deviations from the Bernoulli model, implying that the antepenultimate unit affects the propagation reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3351–3358  相似文献   

14.
Novel acetylenes carrying urea groups, 1-(4-ethynylphenyl)-3-(4-nitrophenyl) urea (1), 1-(4-propargyl)-3-(4-nitrophenyl) urea (2), were synthesized and polymerized with rhodium catalyst. Polymers [poly(1) and poly(2)] with moderate molecular weights were obtained in good yields. The anion sensing ability of poly(1) and poly(2) was estimated using the tetra-n-butylammonium (TBA) salts of a series of anions in DMF. Upon the addition of F-, the color of the DMF solution of poly(1) and poly(2) immediately turned to a different color, while the color of solution changed slightly upon addition of Cl-, HSO4-, Br-, and NO3-, indicating the F- sensing ability of poly(1) and poly(2). The 1H-NMR titrations of poly(1) revealed that the colorimetric response of poly(1) was triggered by the urea/F- interaction through the hydrogen bonding and/or deprotonation process. The absorption spectra titration and Hill plot analysis were carried out to measure the F- binding ability, and the Hill coefficient in the poly(1)/F- complexation was found to be 5.8. This result clearly indicated that this binding mode between poly(1) and F- was based on a positive homotropic allosterism.  相似文献   

15.
The reliability of the values of equilibrium heat of fusion, △H_m, of polytetrafluoroethylene (PTFE)reported in the literature and the inadequacy of the generally accepted value of 13 .7 or 14.6 cal/gwere discussed. Through extrapolating linear plot of △H_m vs. V_(sp) of the thermally aged PTFE virginas-polymerized samples prepared in accord with ASTM D 1457-81a, △H_m~o=79.6J/g (19.0 cal/g)and V_(sp) (specific volume of amorphous PTFE at 23℃)=0.480 cm~3/g (or ρ_a=2 .08g/cm~3) were ob-tained. The heats of fusion, △H_m, of the thermally aged and γ-irradiated samples are different irrespec-tive of the same V_(sp) value for both samples. A qualitative explanation of this phenomenon was givenbased on the H_v patterns of SALS and Kawai's model.  相似文献   

16.
Functional poly(aroyltriazoles) (PATAs) were synthesized by heating mixtures of bis(aroylacetylene)s and diazides in polar solvents such as DMF/toluene at a moderate temperature of 100 °C with high molecular weights (Mw up to 17 200) and regioregularities (1,4-regioisomeric ratio up to ∼95%) in high yields (up to ∼95%). The obtained polymers are soluble in common organic solvents and are thermally stable. The PATAs containing triphenylamine units emit visible light and show unique solvatochromism, exhibiting large two-photon absorption cross sections due to the intramolecular charge transfer between their electron-donating triphenylamine and electron-accepting aroyltriazole units. The tetraphenylethene (TPE)-functionalized polymer shows intriguing aggregation-induced emission phenomenon, that is, the polymer is weakly emissive in its solution state but emit strongly in its aggregate/solid state with quantum yield of ∼7.1%.  相似文献   

17.
Thermo-optical analysis of solution cast mixtures of poly (ethylene oxide) (POE) and poly (methyl methacrylate) (PMMA) has been carried out. Melting point depression was observed for increasing proportion of PMMA in the mixture. An analytical expression appropriate to the crystallineamorphous polymer pair has been applied to explain the melting point depression in terms of thermodynamic quantities. From this expression, the interaction parameter for the mixture has been evaluated. The influence of Mw of POE on the binary interaction parameter has been studied.  相似文献   

18.
The effect of untreated and tri-n-octylphosphine oxide (TOPO) surface-treated TiO2 nanoparticles when included as filler in poly(ethylene terephthalate) on its compatibility, non-isothermal crystallization behavior, viscoelastic transitions and cold crystallization has been studied. The effectiveness of the surface treatment has been studied using infrared spectrophotometry (FTIR) and thermogravimetric analysis (TGA). The effect of the untreated and surface-treated nanofiller content in the polymer, added by an extrusion process, on the non-isothermal crystallization has been studied by differential scanning calorimetry (DSC). The influence on the viscoelastic transitions and cold crystallization of PET nanocomposites has been studied through thermomechanical analysis (TMA). The surface treatment and the concentration of nanofiller influence the non-isothermal crystallization behavior, the viscoelastic transitions and the cold crystallization of the PET nanocomposites, enables us to evaluate the compatibility and the level of dispersion/aggregation of the nanofiller in the poly(ethylene terephthalate).  相似文献   

19.
Blends of poly(vinyl chloride) (PVC) and α-methylstyrene–methacrylonitrile–ethyl acrylate (AMS-MAN-EA) terpolymer have been prepared and properties studied. The polyblends are unusual inasmuch as they are transparent and possess a single glass transition; therefore, they are homogeneous. The single Tg suggests a single-phase system. The polyblends exhibit rarely observed polymer–polymer compatibility.  相似文献   

20.
The miscibility of poly(acrylic acid) (PAA) and poly(sodium styrene sulfonate) (PSSNa), in H2O was investigated by a dilute solution viscometry method (DSV). The miscibility of the polymer blend was investigated on the basis of the signs of the interaction parameters Δ[b]m, Δ[η]m, ΔB and μ. The results from the viscosity method were correlated with the miscibility data obtained for the same blend by Fourier transform infrared and differential scanning calorimetry. These investigation indicated that the examined blend was miscible for all composition ratios examined (w2 = 0.10, 0.25, 0.50, 0.75, and 0.90).The addition of urea to the polymer mixture H2O (1)/PAA (2)/PSSNa (3) decreased the miscibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号