首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 243 毫秒
1.
为了研究HL-2M装置中性束注入(NBI)加热用的80k V/45A/5s热阴极离子源束光学特性,采用红外电荷耦合元件(CCD)成像技术,测量离子源引出粒子束轰击量热靶板产生的温度分布,得到束功率密度空间分布区间特征参数1/e半宽度。在NBI热阴极离子源调试平台上,扫描离子源的放电和引出参数,利用CCD红外热像仪获得了对应参数下量热靶上的束功率密度分布。实验结果表明,HL-2M装置NBI加热系统80k V/45A离子源可用的导流系数范围为0.7~1.5?P。同样导流系数下,梯度电极与等离子体电极的分压比较高时,引出束流的半宽度较小。  相似文献   

2.
为满足 HL-2M 装置高约束模式及高参数实验需求,HL-2M 装置规划 3 条中性束注入(NBI)加热束线, NBI 加热功率为 15MW。第 1 和第 2 条束线是基于正离子源的 NBI 加热束线,根据中后期高参数实验状态确定第 3 条束线采用正离子源或者负离子源。本文简要介绍了 HL-2M 装置的加热束线布局和系统设计概念,综述了基于 4 套 80kV/45A/5s 离子源的 5MW-NBI 中性束加热束线的设计参数及研制进展。在物理和工程可行性简要分析基 础上,给出了采用 2 套 200kV/12.5A/10s 热阴极负离子源的 2.5MW-NBI 束线的概念设计、工程设计及技术研究进 展。   相似文献   

3.
中性束离子源束光学特性直接影响中性束注入功率。通过理论计算和实验扫描的方式对引出束半宽度随导流系数的变化进行了研究。理论上, 采用IGUN程序对HL-2A装置的三电极引出加速器进行了束元轨迹模拟, 采用束几何光学计算程序对高斯束元进行叠加, 得到了在束线量热靶处引出束的1/e半宽度。实验上, 在放电气体为氘气, 弧放电电流分别为200, 300, 400 A时, 对引出高压进行扫描, 利用量热靶上的热偶测量了不同位置处的温升, 用高斯函数拟合得到引出束的分布和1/e半宽度。理论计算和实验结果都表明, 束半宽随着导流系数的增加先减少后逐渐增加。理论计算结果表明不同离子束流下的最佳导流系数值基本不变, 而实验上, 弧流为200, 300, 400 A时, 对应的最佳导流系数分别为1.6, 1.7, 1.85 P。  相似文献   

4.
为开展磁约束堆芯燃烧等离子体物理实验,正在建造的HL-2M装置拟建造3条5 MW的中性束注入加热束线。简要概述了HL-2M装置NBI加热系统的总体规划,第1条5MW-NBI加热束线的设计,离子源调试实验,注入器核心部件的安装和测试结果。通过调试,目前单个离子源引出束流达到36 A,加速电压75 kV,离子束功率达到2.4 MW,脉冲宽度3 s。通过测试发现:注入器的4条离子束汇聚角误差小于±0.1°,残留离子偏转磁体的磁场测试值与模拟计算值偏差小于±5%,注入器静态真空值达到1.0×10-3 Pa。注入器采用大型非标低温泵,低温泵的抽速达到2.40×106 L/s。第1条5MW-NBI加热束线的试装和测试结果表明,该束线能够满足HL-2M装置NBI加热的技术要求。  相似文献   

5.
介绍了为HL-2A装置设计的引出束功率为1MW的射频离子源研制情况。目前,在测试平台上,该离子源已经成功引出了束能量和束电流分别为35ke V和12.4A、束质子比为79%、脉宽为100ms的氢离子束,达到了其设计束功率的44%。用红外热成像的方法测量了离子束能量密度分布。结果表明,在距离引出系统地电极1.3m处,束密度分布遵循高斯分布。引出束的最佳导流系数为1.689×10–6A?V-3/2左右,随射频功率改变有较小的变化。根据这些实验结果,采取了相关改进措施来改善离子源的引出束性能。  相似文献   

6.
射频离子源束流特性分析   总被引:2,自引:1,他引:1  
介绍了为HL-2A 装置设计的引出束功率为1MW 的射频离子源研制情况。目前,在测试平台上,该离子源已经成功引出了束能量和束电流分别为35keV 和12.4A、束质子比为79%、脉宽为100ms 的氢离子束,达到了其设计束功率的44%。用红外热成像的方法测量了离子束能量密度分布。结果表明,在距离引出系统地电极 1.3m 处,束密度分布遵循高斯分布。引出束的最佳导流系数为1.689×10–6A•V-3/2 左右,随射频功率改变有较小的变化。根据这些实验结果,采取了相关改进措施来改善离子源的引出束性能。  相似文献   

7.
采用电磁场模拟软件CST Studio中的电磁工作室计算了HL-2M装置纵向和极向场线圈在装置周边的磁场时空分布。计算结果表明,在中性束注入器中性化室及离子源引出区域的磁场超过2-10-3T,需要在注入器的中性化和离子源区域采用磁屏蔽结构。利用CST软件模拟计算了基于纯铁材料的NBI 注入器离子源及中性化区域的磁屏蔽罩内的磁场分布。  相似文献   

8.
为了给HL-2M装置建设一条5 MW中性束加热束线,开展了中性束加热用热阴极弧放电离子源放电室的研制。这条中性束束线包含4套80 kV/45 A/5 s离子源,放电室的设计指标为850 A/5 s。首先采用CST软件中的电磁工作室对特定几何结构的放电室会切磁场进行了模拟计算,得到了会切磁场分布,验证了会切磁场布局的合理性。针对放电室加工工艺和实验过程中局部拉弧等问题,对放电室结构进行了不断改进。放电室侧壁由40列会切磁体改为7圈环形磁体,阴极灯丝结构从灯丝板结构最终改为陶瓷可伐结构,并且在放电室和加速器之间增加了陶瓷屏蔽。在阴极板结构放电室和阴极陶瓷可伐结构放电室内都获得了正常的弧放电。最终定型的放电室采用周边7圈环形会切磁体和陶瓷可伐结构。在定型的放电室内达到了5 MW中性束束线离子源弧放电的指标。弧放电时间接近5 s,最大弧放电电流达到1 000 A。  相似文献   

9.
在中性束离子源引出过程中,详细分析了引出束流的产生,这有利于得到更准确的引出功率和引出电极表面的热功率沉积情况。根据HL-2A装置中性束离子源引出电极的电连接方式和束流引出的物理过程,对离子源束流引出过程进行了分析,给出抑制极电流产生的主要来源。通过分析放电气压扫描实验中的结果发现:随着放电气压的增加,不同弧放电电流情况下抑制极电流均逐渐增加,且抑制极电流与引出电流的比值近似线性增加。针对引出离子束流经过引出电极的过程建立了物理模型。计算了抑制极电流与引出电流的比值与放电气压的依赖关系,计算结果与实验结果一致,验证了引出束流分析结果的合理性。  相似文献   

10.
为提高NBI系统的稳定运行参数和可靠性,研制了一台基于高频开关电源技术的全固态调制输出负高压测试电源,并将HL-2A装置NBI系统原4套抑制极电源的电子管调制器改为基于IGBT串联技术的全固态调制器.对比原抑制极电源系统,给出了基于高频开关技术和IGBT串联技术的抑制极电源结构.结合NBI系统调试实验,通过调节抑制极电源电压,瞬态电流输出能力,分析了抑制极电源输出性能对离子源束流引出特性,离子源引出电极击穿特性的影响,获得了引出稳定离子束流的最低抑制电压.  相似文献   

11.
The engineering design of 60 kV, 55 A, 2 s bucket ion source for HL-2A has been finished. The current design is based on an extraction-acceldecel extraction system that is composed of plasma electrode, acceleration electrode, deceleration electrode and grounded electrode. The primary and secondary particles due to beams ionization in each region of extraction system will hit the surface of electrode. The power loads on an electrode is estimated both theoretically and experimentally to be 1%-2% of the ion beam power, which may cause serious problems, such as thermal deformation followed by ion beam distortion and melting leading to water leaks. To ensure the mechanical reliability and no plastic deformation, it is important and necessary to analysis the temperature and stress distribution.  相似文献   

12.
The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. The first long pulse ion source (LPIS-1) has been installed in the NBI-1 for an auxiliary heating and current drive of KSTAR plasmas. The performance of 300 s ion beam extraction in the LPIS-1 was investigated on the KSTAR NBI-1 system, prior to the neutral beam injection for long pulse operation. The ion source consists of a magnetic bucket plasma generator with multi-pole cusp fields and a set of prototype tetrode accelerators with circular-type apertures. The inner volume of the plasma generator and accelerator column in the LPIS-1 is approximately 123 L. The nominal operation requirements for the ion source (IS) were a 100 kV/50 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called an arc-beam extraction method. A stable ion beam extraction of the LPIS-1 was achieved with 80 kV/27 A and a beam perveance of 1.19 microperv for a 300 s pulse length. Beam power deposition along the NBI-1 has been measured using water-flow calorimetry (WFC), and the sum of the deposited power on the ion source and beamline components was about 93% of the drained acceleration power (Vacc?Iacc). The beam power deposition was compared to the calculated results of the beam transport with re-ionization (BTR) code.  相似文献   

13.
The time and space distribution of the toroidal and poloidal magnetic field surrounding the HL-2M tokamak was simulated with the electromagnetic field simulation software CST Studio from Germany. The results show that the magnetic field intensity surrounding the neutralizer tank and ion source of NBI device was more than2?10-3T, so the magnetic shielding of NBI neutralizer tank and ion source was necessary. Then the magnetic field distribution surrounding NBI neutralizer tank and ion source after shielding with iron was simulated with CST Studio.  相似文献   

14.
A negative-ion-based neutral beam injection (NBI) system is planned for plasma heating of the Large Helical Device (LHD). We have developed a negative ion source, which is 1/3 the scale of the source for the NBI. A magnetic filter held was generated by external permanent magnets to lower the electron temperature in a large-area bucket plasma source (35 cm×62 cm) for efficient H- production. We investigated the magnetic field configuration and found a low electron temperature high density plasma (<1 eV, 1012/cm3) could be achieved with an optimized configuration, The filter strength (Bmax=70 G, line-integral flux=780 G cm at the center axis of the source) was proved to be enough to lower the electron temperature below 1 eV at high arc discharge power (100 kW) and low pressure (0.4 Pa). We injected cesium vapor into the plasma source to enhance H- production efficiency and obtained a 16.2-A H- beam current (31 mA/cm2, 47 kV) using a large-area, four-grid electrostatic extraction system (25 cm×50 cm). This satisfied the development target (>15 A: 1/3 current of LHD ion source). Based on the results, we are designing a negative ion source for the LHD  相似文献   

15.
A new ion source has been designed and manufactured for the CYCLONE30 accelerator, which has a much advanced performance compared with the original. It is expected that the newly designed ion source extraction system will transport a very large percentage of the beam without deteriorating the beam optics, which is designed to deliver an H- beam at 30 keV. The accelerator assembly consists of three circular aperture electrodes made of copper. The simulation study was focused on finding parameter sets that raise the beam perveance as large as possible and which reduce the beam divergence as low as possible. Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum, for which the perveance current intensity and the extraction gap have optimum values. The triode extraction system is designed and optimized by using CST software (for Particle Beam Simulations). The physical design of the extraction system is given in this paper. From the simulation results, it is concluded that it is possible to achieve this goal by decreasing the thickness of the plasma electrode, shortening the first gap, and adjusting the acceleration electrode voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号