首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Со-Мо/Al2O3 and Ni-W/Al2O3 catalysts were tested in hydrotreating of light cycle oil from catalytic cracking, of the straight-run gasoil, and of their mixture under typical hydrotreating conditions used in industry. The catalysts prepared using PMo12 and PW12 heteropoly acids exhibit high catalytic activity. The Со-Мо/Al2O3 catalyst is more active in hydrodesulfurization and hydrogenation of olefin and diene hydrocarbons, whereas the Ni-W/Al2O3 catalysts are more active in hydrogenation of mono- and polycyclic aromatic hydrocarbons. Comparison of the quality characteristics of the hydrogenizates obtained with the requirements of the technical regulations shows that the required levels of the sulfur content and cetane number of the hydrogenizates at practically accessible process parameters can be reached for mixtures of the straight-run gasoil and light cycle oil from catalytic cracking with high content of the latter component only when the process with the Со-Мо/Al2O3 system and Ni-W/Al2O3 catalysts is performed in two steps.  相似文献   

2.
Deposited palladium catalysts of the hydrodechlorination of 1,3,5-trichlorobenzene were studied. Pure zirconium and aluminum oxides and ZrO2-Al2O3 mixtures with 1, 5, and 10 mol % Al2O3 prepared by coprecipitation were used as supports. Palladium was deposited by the precipitation of its hydroxide on supports. Catalysts on binary supports (ZrO2 + 1% Al2O3 and ZrO2 + 5% Al2O3) exhibited higher activity and stability in hydrodechlorination compared with catalysts on pure supports. The suggestion was made that the high activity and stability of these systems in hydrodechlorination was related to the formation of binary oxide in the interaction of ZrO2 with palladium oxide at the stage of annealing of the catalyst precursor. Binary oxide, which was a center of the activation of the C-Cl bond, was simultaneously a source of active hydrogen. The presence of various palladium states in catalysts was substantiated by the temperature programmed reduction method.  相似文献   

3.
Catalytic performance of gallia-supported iridium catalysts in the reaction of selective hydrogenation of crotonaldehyde in the gas phase was studied and compared to that of platinum and ruthenium catalysts. The best catalytic properties in terms of the selectivity to crotyl alcohol are shown by 5 wt % Pt/α-Ga2O3 and 5 wt % Ir/α-Ga2O3 catalysts prepared from nonchlorine precursors: Pt(acac)2 and Ir(acac)3, but for the 5 wt % Pt/α-Ga2O3 a very high selectivity of 75% at the high conversion (ca. 60%) is observed. A high selectivity of galia-supported iridium and platinum catalysts was explained by the surface reducibility of gallium oxide leading to covering (decoration) of platinum and iridium by gallium suboxides and the promoting effect of gallium.  相似文献   

4.
Global warming, fossil fuel depletion and fuel price increases have motivated scientists to search for methods for the storage and reduction of the amount of greenhouse gases, especially CO2. The hydrogenation process has been introduced as an emerging method of CO2 capture and convertion into value-added products. In this study, new types of catalysts are introduced for CO2 hydrogenation and are compared based on catalytic activity and product selectivity. The physical properties of the samples are specified using BET. Iron catalysts supported on γ-Al2O3 with different metal promoters (X = Ni, K, Mn, Cu) are prepared through the impregnation method. Moreover, Fe–Ni catalysts supported on HZSM5-Al2O3 and Ce–Al2O3 are synthesized. Samples are reduced by pure H2 and involved in hydrogenation reaction in a fixed bed reactor (H2/CO2 = 3, total pressure = 10 MPa, temperature = 523 K, GHSV = 2000, 1250 nml/min). All catalysts provide high conversion in hydrogenation reactions and the results illustrate that the selectivity of light hydrocarbons is higher than that of methane and CO. It is found that Ni has a promoting effect on the conversion fluctuations throughout the reaction with 66.13% conversion. Using combined supported catalysts leads to enhancing catalytic performance. When Fe–Ni/γ–Al2O3—HZSM5 is utilized, CO2 conversion is 81.66% and the stability of the Fe–Ni catalyst supported on Al2O3 and Ce–Al2O3 furthey improves.  相似文献   

5.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

6.
The comparative study of the role of binary oxide support on catalyst physico-chemical properties and performance in methanol synthesis were undertaken and the spinel like type structures (ZnAl2O4, FeAlO3, CrAl3O6) were prepared and used as the supports for 5% metal (Cu, Ag, Au, Ru) dispersed catalysts. The monometallic 5% Cu/support and bimetallic 1% Au (or 1% Ru)-5% Cu/support (Al2O3, ZnAl2O4, FeAlO3, CrAl3O6) catalysts were investigated by BET, XRD and TPR methods. Activity tests in methanol synthesis of CO and CO2 mixture hydrogenation were carried out. The order of Cu/support catalysts activity in methanol synthesis: CrAl3O{ia6} > FeAlO3 > ZnAl2O4 is conditioned by their reducibility in hydrogen at low temperature. Gold appeared more efficient than ruthenium in promotion of Cu/support catalysts. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 2, pp. 242–248. The article is published in the original.  相似文献   

7.
Transition metal catalysts have been considerably used for NH3 decomposition because of the potential application in COx-free H2 generation for fuel cells. However, most transition metal catalysts prepared via traditional synthetic approaches performed the inferior stability due to the agglomeration of active components. Here, we adopted an efficient method, aerosol-assisted self-assembly approach (AASA), to prepare the optimized cobalt-alumina (Co3O4-Al2O3) catalysts. The Co3O4-Al2O3 catalysts exhibited excellent catalytic performance in the NH3 decomposition reaction, which can reach 100% conversion at 600 °C and maintain stable for 72 h at a gaseous hourly space velocity (GHSV) of 18000 cm3 gcat?1 h?1. The catalysts were characterized by various techniques including transmission electron microscope (TEM), scanning electron microscope (SEM), nitrogen sorption, temperature-programmed reduction by hydrogen (H2-TPR), ex-situ/in-situ Raman and ex-situ/in-situ X-ray diffraction (XRD) to obtain the information about the structure and property of the catalysts. H2-TPR and in-situ XRD results show that there is strong interaction between the cobalt and alumina species, which influences the redox properties of the catalysts. It is found that even a low content of alumina (10 at%) is able to stabilize the catalysts due to the adequate dispersion and rational interaction between different components, which ensures the high activity and superior stability of the cobalt-alumina catalysts.  相似文献   

8.
Selective catalytic reduction (SCR) with ammonia has been considered as the most promising technology, as its effect deals with the NOX. Novel Fe-doped V2O5/TiO2 catalysts were prepared by sol–gel and impregnation methods. The effects of iron content and reaction temperature on the catalyst SCR reaction activity were explored by a test device, the results of which revealed that catalysts could exhibit the best catalytic activity when the iron mass ratio was 0.05%. It further proved that the VTiFe (0.05%) catalyst performed the best in denitration and its NOX conversion reached 99.5% at 270 °C. The outcome of experimental procedures: Brunauer–Emmett–Teller surface area, X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and adsorption (H2-TPR, NH3-TPD) techniques showed that the iron existed in the form of Fe3+ and Fe2+ and the superior catalytic performance was attributed to the highly dispersed active species, lots of surface acid sites and absorbed oxygen. The modified Fe-doped catalysts do not only have terrific SCR activities, but also a rather broad range of active temperature which also enhances the resistance to SO2 and H2O.  相似文献   

9.
A series of NiMoW/P-Al2O3 catalysts with different Mo/W ratios (sample containing Mo only, Mo/W = 2: 1, Mo/W = 1: 1, Mo/W = 1: 2, and sample containing W only; P2O5 content of the support 2.0 wt %) were synthesized. The precursors of the active phase were the heteropoly acids H3PMo12O40?nH2O and H3PW12O40?nH2O, and also nickel citrate. The sulfide phase in the samples was studied by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy; the catalytic activity of the samples in dibenzothiophene hydrodesulfurization and naphthalene hydrogenation was determined. For the dibenzothiophene hydrogenolysis in the presence of quinoline and naphthalene (content in the model mixture, wt %: dibenzothiophene 0.3, naphthalene 1.5, and quinoline 0.5), kHDS for different samples is in the range 17.6–42.5 h–1 at 275°C and 24.6–45.9 h–1 at 300°C. For the naphthalene hydrogenation, kHYD varies from 0.79 to 1.89 h–1 at 275°C and from 0.91 to 3.78 h–1 at 300°C. The sample based on molybdenum showed the highest activity in hydrogenation and hydrodesulfurization.  相似文献   

10.
The influence of the alumina support on the catalytic activity of Pt/Al2O3 catalysts in aqueous phase reforming of ethylene glycol to hydrogen was studied. The catalysts were prepared by impregnation of γ-, δ-, and α-alumina with H2PtCl6. The highest rate of hydrogen production (452 μmol min−1 g−1) obtained with the Pt/α-Al2O3 catalyst can be related to the highest extent of dispersion of Pt on α-Al2O3. XPS, TEM-EDX and TPR-H2 measurements showed the absence of chloride-containing surface complexes in the Pt/α-Al2O3 catalyst. However, chloride-containing entities were found on the surface of Pt/γ-Al2O3 and Pr/δ-Al2O3 catalysts. When chloride ions are removed chlorinated Pt species facilitate the sintering of Pt crystallites and in this way affect the extent of Pt dispersion. Moreover, depending upon the particular crystalline form, alumina atoms have different coordination and alumina surfaces contain varying amounts of OH groups of different nature which affect the interaction between Pt and the support.  相似文献   

11.
A series of MoO3 doped Fe2O3 catalysts prepared by the co-precipitation method were investigated in the selective catalytic reduction of NO by NH3 (NH3-SCR). The catalysts displayed excellent catalytic activity from 225 to 400°C and high tolerance to SO2/H2O poisoning at 300°C. To characterize the catalysts the N2-BET, XRD, Raman, NO-TPD, NH3-TPD and in situ DRIFTS were carried out. It was found that the main reason explaining a high NH3-SCR performance might be the synergistic effect between Fe and Mo species in the catalyst that could enhance the dispersion of Fe2O3 and increase NH3 adsorption on the catalyst surface.  相似文献   

12.
The physico-chemical characteristics and microstructure of cobalt silica gel catalysts with an Al2O3 additive (up to 10%) for the synthesis of hydrocarbons by the Fischer–Tropsch method are studied using a set of methods including X-ray diffraction, BET, IR spectroscopy, and temperature-programmed reduction of H2, as well as scanning and transmission electron microscopy. Phases with a spinel structure, Со3О4, CoAl2O4, and solid solutions on their basis are identified in the samples. The addition of Al2O3 changes the degree of heterogeneity and the orientation of the cobalt crystallites in the oxide and reduced forms of the catalysts. Addition of 1% Al2O3 stabilizes Со3О4 in the spinel form with a structure close to the normal one and promotes the formation of cobalt with a unimodal distribution of particles with an average size of 8 nm. The catalyst is characterized by maximum activity and selectivity with respect to C5+ carbons.  相似文献   

13.
Gold-palladium catalysts supported on cerium oxide were synthesized with the double complex salts. X-ray photoelectron spectroscopy (XPS) and other physicochemical methods (TEM, TPR) were used to demonstrate that synthesis of highly active palladium catalysts requires the oxidative treatment stimulating the formation of a catalytically active surface solid solution Pd x Ce1?x O2, which is responsible for the lowtemperature activity (LTA) in the reaction CO + O2. In the case of gold catalysts, active sites for the lowtemperature oxidation of CO are represented by gold nanoparticles and its cationic interface species. Simultaneous deposition of two metals increases the catalyst LTA due to interaction of both gold and palladium with the support surface to form a Pd1?x CexO2 solid solution and cationic interface species of palladium and gold on the boundary of Pd-Au alloy particles anchored on the solid solution surface.  相似文献   

14.
Biodiesel containing almost no glycerol has been produced by coupling reaction carried out over K2CO3 supported by calcium oxide as solid base catalysts. The solid base catalysts synthesized by wet impregnation exhibit an exceedingly high activity in biodiesel production. It was found that the reaction time required for the highest yield of biodiesel, 99.2%, can be shortened to 30 min over K2CO3/Al2O3 under the optimum reaction conditions: 8: 1: 1 molar ratio of methanol/DMC/oil, 30 wt % K2CO3/Al2O3 catalyst, and 65°C reaction temperature. Solid basic catalysts examined in the study were characterized by BET surface area, XRD, CO2-TPD, and SEM techniques. The strong interaction between K2CO3 and the support yields a new basic active site, which can be probably responsible for the high activity of K2CO3/Al2O3.  相似文献   

15.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

16.
Non-precious metal bifunctional catalysts are of great interest for metal–air batteries, electrolysis, and regenerative fuel cell systems due to their performance and cost benefits compared to the Pt group metals (PGM). In this work, metal oxides of La0.1Ca0.9MnO3 and nano Co3O47 catalyst as bifunctional catalysts were used in oxygen reduction and evolution reactions (ORER). The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption isotherms. The electrocatalytic activity of the perovskite-type La0.1Ca0.9MnO3 and Co3O4 catalysts both as single and mixtures of both were assessed in alkaline solutions at room temperature. Electrocatalyst activity, stability, and electrode kinetics were studied using cyclic voltammetry (CV) and rotating disk electrode (RDE). This study shows that the bifunctional performance of the mixed La0.1Ca0.9MnO3 and nano Co3O4 was superior in comparison to either La0.1Ca0.9MnO3 or nano Co3O4 alone for ORER. The improved activity is due to the synergistic effect between the La0.1Ca0.9MnO3 and nano Co3O4 structural and surface properties. This work illustrates that hybridization between these two metal oxides results in the excellent bifunctional oxygen redox activity, stability, and cyclability, leading to a cost-effective application in energy conversion and storage, albeit to the cost of higher catalyst loadings.  相似文献   

17.
The samples of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene impurities in an ethane-ethylene mixture were studied using the IR spectroscopy of adsorbed CO, X-ray diffraction analysis, and thermogravimetry. In the course of reaction and regeneration, the total concentration of the supported metals (Pd and Ag) changed only slightly. The degree of accessibility of silver atoms to CO adsorption and the amount of these atoms in the nearest environment of palladium atoms decreased to result in an increase in the selectivity of acetylene hydrogenation to ethane. The decrease in the accessibility of silver was due to a change in the phase composition of the alumina support as a result of its rehydration. It was hypothesized that the resulting aluminum hydroxide with the boehmite morphology is a source of the strongest Lewis acid sites, which catalyze oligomerization processes on the catalyst surface.  相似文献   

18.
A series of Co-modified Ce0.5Zr0.5O2 catalysts with different concentrations of Co (mass %: 0, 2, 4, 6, 8, 10) was investigated for diesel soot combustion. Ce0.5Zr0.5O2 was prepared using the coprecipitation method and Co was loaded onto the oxide using the incipient wetness impregnation method. The activities of the catalysts were evaluated by thermogravimetric (TG) analysis and temperature-programmed oxidation (TPO) experiments. The results showed the soot combustion activities of the catalysts to be effectively improved by the addition of Co, 6 % Co/Ce0.5Zr0.5O2 and that the 8 % Co/Ce0.5Zr0.5O2 catalysts exhibited the best catalytic performance in terms of lower soot ignition temperature (Ti at 349°C) and maximal soot oxidation rate temperature (Tm at 358°C). The reasons for the improved activity were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These results revealed that the presence of Co could lower the reduction temperature due to the synergistic effect between Co and Ce, thereby improving the activity of the catalysts in soot combustion. The 6 % Co catalyst exhibited the best catalytic performance, which could be attributed to the greater amounts of Co3+ and surface oxygen species on the catalyst.  相似文献   

19.
The conversions of a mixture of platinum(IV) and palladium(II) chloro complexes in aqueous solution and on the γ-Al2O3 surface at 25–150°C are reported. Heat treatment can initiate interaction between the complexes, both dissolved and adsorbed. The hydrolysis of the chloroplatinate ion is accelerated by the palladium chloro complex, whose composition remains unchanged.  相似文献   

20.
The influence of the support (Al2O3 and activated carbon) on the activity of Mo, NiMo, and CoMo catalysts in thiophene hydrogenolysis is studied using 35S as a tracer. The carbon-supported catalysts have more active sites than their alumina-supported counterparts, while the turnover frequencies of these sites are similar. Thiophene desulfurization and hydrogenation of the resulting C4 olefins take place at the same Mo sites. Tracer tests have demonstrated that the active sites in the catalysts examined are identical and that the support has an effect only on their concentration.Translated from Kinetika i Kataliz, Vol. 46, No. 1, 2005, pp. 85–96.Original Russian Text Copyright © 2005 by Kogan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号