首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Со-Мо/Al2O3 and Ni-W/Al2O3 catalysts were tested in hydrotreating of light cycle oil from catalytic cracking, of the straight-run gasoil, and of their mixture under typical hydrotreating conditions used in industry. The catalysts prepared using PMo12 and PW12 heteropoly acids exhibit high catalytic activity. The Со-Мо/Al2O3 catalyst is more active in hydrodesulfurization and hydrogenation of olefin and diene hydrocarbons, whereas the Ni-W/Al2O3 catalysts are more active in hydrogenation of mono- and polycyclic aromatic hydrocarbons. Comparison of the quality characteristics of the hydrogenizates obtained with the requirements of the technical regulations shows that the required levels of the sulfur content and cetane number of the hydrogenizates at practically accessible process parameters can be reached for mixtures of the straight-run gasoil and light cycle oil from catalytic cracking with high content of the latter component only when the process with the Со-Мо/Al2O3 system and Ni-W/Al2O3 catalysts is performed in two steps.  相似文献   

2.
The behavior of the manganese-alumina system with Mn:Al = 1:1 on heating in air and vacuum was studied. The starting samples were mixtures of β-Mn3O4, α-Mn2O3, and γ-Al2O3. On heating to 950°C in air, the samples were partially oxidized into α-Mn2O3, and corundum α-Al2O3 formed along with mixed manganese-alumina cubic spinel, whose composition was close to Mn2AlO4. In vacuum at 1200°C, the starting sample with a ratio of Mn:Al = 1:1 transformed into the manganese-alumina spinel Mn1.5Al1.5O4, which retained its cubic structure after slow cooling in vacuum. When cooled in air, this solid solution delaminated, and a nanocrystalline Mn2.8Al0.2O4 phase formed, whose structure was β-Mn3O4 type tetragonal spinel.  相似文献   

3.
The comparative study of the role of binary oxide support on catalyst physico-chemical properties and performance in methanol synthesis were undertaken and the spinel like type structures (ZnAl2O4, FeAlO3, CrAl3O6) were prepared and used as the supports for 5% metal (Cu, Ag, Au, Ru) dispersed catalysts. The monometallic 5% Cu/support and bimetallic 1% Au (or 1% Ru)-5% Cu/support (Al2O3, ZnAl2O4, FeAlO3, CrAl3O6) catalysts were investigated by BET, XRD and TPR methods. Activity tests in methanol synthesis of CO and CO2 mixture hydrogenation were carried out. The order of Cu/support catalysts activity in methanol synthesis: CrAl3O{ia6} > FeAlO3 > ZnAl2O4 is conditioned by their reducibility in hydrogen at low temperature. Gold appeared more efficient than ruthenium in promotion of Cu/support catalysts. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 2, pp. 242–248. The article is published in the original.  相似文献   

4.
Liquid-phase reduction NO 3 using monometallic and bimetallic catalysts (5% Rh/Al2O3, 5% Rh-0.5% Cu/Al2O3, 5% Rh-1.5% Cu/Al2O3, 5% Rh-5% Cu/Al2O3 and a physical mixture of 5% Rh/Al2O3 and 1.5% Cu/Al2O3) was studied in a slurry reactor operating at atmospheric pressure. Kinetic measurements were performed for a low concentration of nitrate (0.4 × 10−3−3.2 × 10−3 mol dm−3) and the temperature range 293–313 K. From the experimental data, it was found that the reduction of nitrate is first order with respect to nitrate. On the basis of the rate constants, the apparent activation energy was established using a graphic method. Published in Russian in Kinetika i Kataliz, 2007, Vol. 48, No. 6, pp. 881–886. This article was submitted by the authors in English.  相似文献   

5.
Coexisting solid solutions with spinel and corundum structure were synthesized at 1773 K and two pressures, 1 bar and 25 kbar. Samples were analyzed by electron microprobe analysis and X-ray powder diffraction. Pressure and temperature were shown to affect the properties of the solid solutions in different ways. Pressure governs the composition of the defect spinel Mg1−xAl2O4, and temperature changes the cation distribution between coexisting phases. This allows one to separate the effects of cation exchange and magnetic contribution to the heat capacity in thermodynamic modeling. The defect spinel itself can form only because γ-Al2O3 exists, polymorph with spinel structure.  相似文献   

6.
Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.  相似文献   

7.
Transition metal catalysts have been considerably used for NH3 decomposition because of the potential application in COx-free H2 generation for fuel cells. However, most transition metal catalysts prepared via traditional synthetic approaches performed the inferior stability due to the agglomeration of active components. Here, we adopted an efficient method, aerosol-assisted self-assembly approach (AASA), to prepare the optimized cobalt-alumina (Co3O4-Al2O3) catalysts. The Co3O4-Al2O3 catalysts exhibited excellent catalytic performance in the NH3 decomposition reaction, which can reach 100% conversion at 600 °C and maintain stable for 72 h at a gaseous hourly space velocity (GHSV) of 18000 cm3 gcat?1 h?1. The catalysts were characterized by various techniques including transmission electron microscope (TEM), scanning electron microscope (SEM), nitrogen sorption, temperature-programmed reduction by hydrogen (H2-TPR), ex-situ/in-situ Raman and ex-situ/in-situ X-ray diffraction (XRD) to obtain the information about the structure and property of the catalysts. H2-TPR and in-situ XRD results show that there is strong interaction between the cobalt and alumina species, which influences the redox properties of the catalysts. It is found that even a low content of alumina (10 at%) is able to stabilize the catalysts due to the adequate dispersion and rational interaction between different components, which ensures the high activity and superior stability of the cobalt-alumina catalysts.  相似文献   

8.
A series of cobalt-containing granulated and structured catalysts based on zirconium and aluminum oxides has been studied. The optimum composition of binary oxide samples (80% ZrO2 − 20% Al2O3) for the selective reduction of nitrogen monoxide with methane (84% conversion of NO achieved at 320 °C) has been determined. The activity of the structured catalysts depends on both the composition of the secondary carrier (ZrO2, Al2O3, and their mixture) and on the nature of the skeleton of the cellular structure (cordierite, kaolin-aerosil). __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 4, pp. 237–241, July–August, 2007.  相似文献   

9.
This work is focused on the role of gold and Al3CrO6 support for physicochemical properties, and catalytic activity of supported nickel catalysts in partial oxidation of methane (POM). Catalysts, containing 5% Ni and 5% Ni-2% Au active phases dispersed on mono- (Al2O3, Cr2O3) and bi-oxide Al3CrO6 support, were investigated by TPR, BET and XRD methods, and the activity tests in POM reaction were carried out. Bimetallic Ni-Au catalysts dispersed on Al3CrO6 support remained highly stable and active. The amorphous binary oxide Al3CrO6 can stabilize considerable amount of Cr4+, Cr5+, and Cr6+ species in Ni-Au/Al3CrO6 catalyst network during its calcination in the air. Nickel supported on binary oxide Ni/Al3CrO6 can form Ni(III)CrO3 bi-oxide phase in reductive conditions. During TPR H2 reduction of Ni-Au/Al3CrO6 catalyst chromium(II) oxide Cr(II)O phase is observed. After POM reaction the existence of bimetallic Au-Ni alloy was experimentally confirmed on mono-oxide Al2O3 support surface, but its formation was not identified on bioxide Al3CrO6 support. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 1, pp. 149–156. The article is published in the original. Based on a report at the VII Russ. Conf. on Mechanisms of Catalytic Reactions (with international participation), St. Petersburg, July 2–8, 2006.  相似文献   

10.
Single-phase zinc aluminate (ZnAl2O4) nanoparticles with the spinel structure was successfully obtained by the sol–gel method. The nanoparticles are crystalline with no impurities related to ZnO or Al2O3 residues. The microstructural environment of aluminum ions changes with heat treatment temperature, as observed by FT-IR and also by 27Al solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. The photoluminescence spectra show that the emission of pristine ZnAl2O4 may change depending on the calcining temperature due to the quantum size effect.  相似文献   

11.
The A1, O, AlO, A12O, Al2O2, WO2, and WO3, partial pressures in the vapor over Al2O3 in a tungsten Knudsen effusion cell between 2300 and 2600 K were derived from A1+, O+, AlO+, A12O+, Al2O2+, WO2+, and WO3+, ion intensities. The mass spectrometer was calibrated against the equilibrium constant of the WO3(g) = WO2(g) + O(g) reaction. Refined values of the ionization cross sections of AlO and A12O2 were used in the partial pressure calculations. The enthalpies of atomization of aluminum suboxides were determined to be Δat H o(AlO, g, 0) = 510.7 ± 3.3 kJ mol−1, Δat H o(Al2O, g, 0) = 1067.2 ± 6.9 kJ mol−1, and Δat H o(Al2O2, g, 0) = 1556.7 ± 9.9 kJ mol−1.  相似文献   

12.
Interactions in the Al2TiO5-Ti2O3 system were studied and the regions of existence of Al2?2xTi 2x 3+ Ti4+O5 solid solutions with a pseudobrookite structure were determined.  相似文献   

13.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

14.
Deposited palladium catalysts of the hydrodechlorination of 1,3,5-trichlorobenzene were studied. Pure zirconium and aluminum oxides and ZrO2-Al2O3 mixtures with 1, 5, and 10 mol % Al2O3 prepared by coprecipitation were used as supports. Palladium was deposited by the precipitation of its hydroxide on supports. Catalysts on binary supports (ZrO2 + 1% Al2O3 and ZrO2 + 5% Al2O3) exhibited higher activity and stability in hydrodechlorination compared with catalysts on pure supports. The suggestion was made that the high activity and stability of these systems in hydrodechlorination was related to the formation of binary oxide in the interaction of ZrO2 with palladium oxide at the stage of annealing of the catalyst precursor. Binary oxide, which was a center of the activation of the C-Cl bond, was simultaneously a source of active hydrogen. The presence of various palladium states in catalysts was substantiated by the temperature programmed reduction method.  相似文献   

15.
Er3+-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method using the aluminum isopropoxide as precursor, acetylacetone as a chelating agent, nitric acid as a catalyzer, and hydrated erbium nitrate as a dopant under isopropanol environment. The different phase structure, including three crystalline types of (Al, Er)2O3 phases, α, γ, θ, and an Er–Al–O stoichiometric compound phase, Al10Er6O24, was observed for the 0.01–0.5 mol% Er3+-doped Al2O3 nanopowders at the sintering temperature of 1,000 °C. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978 nm semiconductor laser diodes excitation. With increasing Er3+ doping concentration from 0.01 to 0.1 mol%, the intensity of the green and red emissions increased with a decrease of the intensity ratio of the green to red emission. When the Er3+ doping concentration rose to 5 mol%, the intensity of the green and red emissions decreased with an increase of their intensity ratio. The maximum intensity of both the green and red emissions with the minimum of intensity ratio was obtained, respectively, for the 0.1 mol% Er3+-doped Al2O3 nanopowders composed of a single α-(Al,Er)2O3 phase. The intensity ratio of the green emission at 523 and 545 nm increased monotonously for all Er3+ doping concentrations. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3+-doped Al2O3 nanopowders.  相似文献   

16.
17.
The catalysts based on MoO3/Al2O3 were synthesized and tested using aqueous hydrogen peroxide as the oxidant in the oxidative desulfurization of thiophene, benzothiophene (BT) and dibenzothiophene (DBT) into the corresponding sulfones. Among catalysts tested, 15%(MoO3–WO3)/Al2O3 prepared by a conventional impregnation method was considerably active for the oxidation of thiophene, BT and DBT, which could achieve higher than 99.2% conversions at lower reaction temperature (≤338 K). The use of hexadecyltrimethyl ammonium bromide as the phase-transfer reagent in small amounts could promote the reaction efficiently.  相似文献   

18.
Biodiesel containing almost no glycerol has been produced by coupling reaction carried out over K2CO3 supported by calcium oxide as solid base catalysts. The solid base catalysts synthesized by wet impregnation exhibit an exceedingly high activity in biodiesel production. It was found that the reaction time required for the highest yield of biodiesel, 99.2%, can be shortened to 30 min over K2CO3/Al2O3 under the optimum reaction conditions: 8: 1: 1 molar ratio of methanol/DMC/oil, 30 wt % K2CO3/Al2O3 catalyst, and 65°C reaction temperature. Solid basic catalysts examined in the study were characterized by BET surface area, XRD, CO2-TPD, and SEM techniques. The strong interaction between K2CO3 and the support yields a new basic active site, which can be probably responsible for the high activity of K2CO3/Al2O3.  相似文献   

19.
Summary A series of Al2O3-SnO2 catalysts with Al2O3 to SnO2 molar ratio of 1:1, 1:0.5, 1:0.2 and 1:0.1 were synthesized by sol-gel technique and characterized by thermal analysis and FTIR. In the case of binary gels - addition of tin component leads to better crosslinking than in pure alumina gel and as a result to a much uniform texture structure.  相似文献   

20.
The crystal structure of a new bismuth aluminoborate Bi0.96Al2.37(B4O10)O is studied by single-crystal X-ray diffraction. The Bi0.96Al2.37(B4O10)O single crystals are hexagonal (space group \(P\bar 6\) 2m). The unit cell parameters are as follows: a = b = 4.587(4) Å, c = 2.253(9) Å, α = β = 90°, γ = 120°, V = 168.60 Å3, Z = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号