首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
Near infrared(NIR) spectroscopy technique has shown great power and gained wide acceptance for analyzing complicated samples.The present work is to distinguish different brands of tobacco products by using on-line NIR spectroscopy and pattern recognition techniques.Moreover,since each brand contains a large number of samples,an improved dendrogram was proposed to show the classification of different brands.The results suggest that NIR spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis(HCA) performs well in discrimination of the different brands,and the improved dendrogram could provide more information about the difference of the brands.  相似文献   

2.
3.
《Vibrational Spectroscopy》2010,52(2):276-282
The combinations of NIR spectroscopy and three classification algorithms, i.e., multi-class support vector machine (BSVM), k-nearest neighbor (KNN) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of cigarettes, were explored. The influence of the training set size on the relative performance of each algorithm was also investigated. A NIR spectral dataset involving the classification of cigarettes of three brands was used for illustration. Three performance criteria based on “correctly classified rate (CCR)”, i.e., “Average CCR”, “95 percentile of CCR” and “S.D. of CCR”, were defined to compare different algorithms. It was revealed that BSVM is significantly better than KNN or SIMCA in the statistical sense, especially in cases where the training set is relatively small. The results suggest that NIR spectroscopy together with BSVM could be an alternative to traditional methods for discriminating different brands of cigarettes.  相似文献   

4.
The combinations of NIR spectroscopy and three classification algorithms, i.e., multi-class support vector machine (BSVM), k-nearest neighbor (KNN) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of cigarettes, were explored. The influence of the training set size on the relative performance of each algorithm was also investigated. A NIR spectral dataset involving the classification of cigarettes of three brands was used for illustration. Three performance criteria based on “correctly classified rate (CCR)”, i.e., “Average CCR”, “95 percentile of CCR” and “S.D. of CCR”, were defined to compare different algorithms. It was revealed that BSVM is significantly better than KNN or SIMCA in the statistical sense, especially in cases where the training set is relatively small. The results suggest that NIR spectroscopy together with BSVM could be an alternative to traditional methods for discriminating different brands of cigarettes.  相似文献   

5.
Near-infrared (NIR) spectroscopy, in combination with chemometrics, enables nondestructive analysis of solid samples without time-consuming sample preparation methods. A new method for the nondestructive determination of compound amoxicillin powder drug via NIR spectroscopy combined with an improved neural network model based on principal component analysis (PCA) and radial basis function (RBF) neural networks is investigated. The PCA technique is applied to extraction relevant features from lots of spectra data in order to reduce the input variables of the RBF neural networks. Various optimum principal component analysis-radial basis function (PCA-RBF) network models based on conventional spectra and preprocessing spectra (standard normal variate (SNV) and multiplicative scatter correction (MSC)) have been established and compared. Principal component regression (PCR) and partial least squares (PLS) multivariate calibrations are also used, which are compared with PCA-RBF neural networks. Experiment results show that the proposed PCA-RBF method is more efficient than PCR and PLS multivariate calibrations. And the PCA-RBF approach with SNV preprocessing spectra is found to provide the best performance.  相似文献   

6.
Metronidazole is a widely used antibacterial and amoebicide drug. The feasibility of the classification of metronidazole samples with respect to their brands was investigated by near-infrared (NIR) spectroscopy along with chemometrics. A total of 92 samples of different lots and four brands were collected for measurements. First, principal component analysis was conducted to visualize the difference between metronidazole samples of different brands. Then, based on an effective classifier-independent method, i.e., joint mutual information, only the 30 most important variables were selected for modeling. From the independent test set, the partial least-squares discriminant analysis model based on the reduced variable set was compared with the corresponding full-spectrum model using all variables, which indicates the model based on the reduced variable set outperforms the full-spectrum model. It appears that the combination of NIR spectroscopy, joint mutual information, and partial least-squares discriminant analysis is a potential method for the classification of metronidazole from different brands and can, therefore, be used in the screening of counterfeit pharmaceutical products.  相似文献   

7.
采用硅烷化衍生化法结合气相色谱-质谱(GC-MS)法对卷烟烟丝中的主要化学成分进行检测,获得了21个卷烟样品的烟丝硅烷化GC-MS指纹图谱数据,并应用聚类分析和主成分分析法对烟丝硅烷化GC-MS指纹图谱数据进行综合评价。结果表明,该方法可用于不同品牌卷烟的比较和区分,硅烷化成分的含量分布特征能反映不同品牌卷烟的特性,可为卷烟品牌的风格表征、品质维护和真伪鉴别提供参考。  相似文献   

8.
The capability of single-reflection near-IR (NIR) spectroscopy to differentiate, characterize and monitor the fate of a set of hydrocarbons spilled in the marine environment was compared with that of multiple-reflection horizontal attenuated total reflection mid-IR (ATR-MIR) spectroscopy. Multivariate pattern recognition techniques [principal component analysis (PCA), multivariate polynomial regression, cluster analysis and potential curves] were applied to unravel the major trends of the weathering processes of four generic types of crude oils and two heavy fuel oils spilled under controlled conditions for almost 4 months. A chemical interpretation of the NIR spectra related the weathering processes and the PCA loadings, which had not already been done in the literature. Weathering for both light and heavy products was characterized by a contrast among the linear aliphatic structures (more volatile and easy to degrade) and the branched and aromatic structures (more recalcitrant). Potential curves were applied to model each product and determine objectively whether unknown samples could be classified correctly. Polynomial regression on the PCA scores was employed to evaluate the time elapsed from the oil spillage to its sampling; this represents a new approach to assess the age of a hydrocarbon lump. In general, NIR spectroscopy yielded good results when light crude oils were studied, whereas ATR-MIR spectroscopy led to satisfactory results for both light and heavy products.  相似文献   

9.
Electronic nose (e-Nose) technology based on metal oxide semiconductor gas sensor array is widely studied for detection of gas components. This paper proposes a new discriminant analysis framework (NDA) for dimension reduction and e-Nose recognition. In a NDA, the between-class and the within-class Laplacian scatter matrix are designed from sample to sample, respectively, to characterize the between-class separability and the within-class compactness by seeking for discriminant matrix to simultaneously maximize the between-class Laplacian scatter and minimize the within-class Laplacian scatter. In terms of the linear separability in high dimensional kernel mapping space and the dimension reduction of principal component analysis (PCA), an effective kernel PCA plus NDA method (KNDA) is proposed for rapid detection of gas mixture components by an e-Nose. The NDA framework is derived in this paper as well as the specific implementations of the proposed KNDA method in training and recognition process. The KNDA is examined on the e-Nose datasets of six kinds of gas components, and compared with state of the art e-Nose classification methods. Experimental results demonstrate that the proposed KNDA method shows the best performance with average recognition rate and total recognition rate as 94.14% and 95.06% which leads to a promising feature extraction and multi-class recognition in e-Nose.  相似文献   

10.
Near-infrared (NIR) spectroscopy, in combination with chemometrics, enable the analysis of raw materials without time-consuming sample preparation methods. The aim of our work was to estimate critical parameters in the analytical specification of oxytetracycline, and consequently the development of a method for quantification and qualification of these parameters by NIR spectroscopy. A Karl Fischer (K.F.) titration to determine the water content, a colorimetric assay method, and Fourier transform-infrared (FT-IR) spectroscopy to identify the oxytetracycline base, were used as reference methods, respectively. Multivariate calibration was performed on NIR spectral data using principal component analysis (PCA), partial least-squares (PLS 1) and principal component regression (PCR) chemometric methods. Multivariate calibration models for NIR spectroscopy have been developed. Using PCA and the Soft Independent Modelling of Class Analogy (SIMCA) approach, we established the cluster model for the determination of sample identity. PLS 1 and PCR regression methods were applied to develop the calibration models for the determination of water content and the assay of the oxytetracycline base. Comparing the PLS and PCR regression methods we found out that the PLS is better established by NIR, especially as the spectroscopic data (NIR spectra) are highly collinear and there are many wavelengths due to non-selective wavelengths. The calibration models for NIR spectroscopy are convenient alternatives to the colorimetric method and to the K.F. method, as well as to FT-IR spectroscopy, in the routine control of incoming material.  相似文献   

11.
Near-infrared (NIR) hyperspectral imaging was used to study three strains of each of three Fusarium spp. (Fusarium subglutinans, Fusarium proliferatum and Fusarium verticillioides) inoculated on potato dextrose agar in Petri dishes after either 72 or 96?h of incubation. Multivariate image analysis was used for cleaning the images and for making principal component analysis (PCA) score plots and score images and local partial least squares discriminant analysis (PLS-DA) models. The score images, including all strains, showed how different the strains were from each other. Using classification gradients, it was possible to show the change in mycelium growth over time. Loading line plots for principal component (PC) 1 and PC2 explained variation between the different Fusarium spp. as scattering and chemical differences (protein production), respectively. PLS-DA prediction results (including only the most important strain of each species) showed that it was possible to discriminate between species with F. verticillioides the least correctly predicted (between 16 and 47?% pixels correctly predicted). For F. subglutinans, 78-100?% pixels were correctly predicted depending on the training and test sets used. Similarly, the percentage correctly predicted values of F. proliferatum were 60-80?%. Visualisation of the mycelium radial growth in the PCA score images was made possible due to the use of NIR hyperspectral imaging. This is not possible with bulk spectroscopy in the visible or NIR regions.  相似文献   

12.
13.
The necessity for inspection and assessment of glued laminated timber structures in service has raised interest in the evaluation of the glue lines. Glue line spectra were analysed and are discussed in detail with respect to spectral contributions from the adhesive, the hardener, the wood lamella below the adhesive, the curing temperature as well as ageing-related spectral changes. The combination of near infrared (NIR) spectroscopy and principal component analysis (PCA) allowed distinguishing between aged and non-aged samples and different copper azole preservative treatment levels of phenol-resorcinol-formaldehyde (PRF) glue lines. NIR-based partial least squares (PLS) regression modelling was performed for the glue line shear strength and for the curing temperature. These findings show that NIR spectroscopy is a fast and useful technique to evaluate the degradation on the PRF glue lines of untreated and copper azole treated laminated timber.  相似文献   

14.
Near infrared (NIR) reflectance spectroscopy coupled with chemometric analysis was evaluated as a non-destructive tool to discriminate skull bone samples from different animal species. In total 70 skull bones from animals of three classes (mammalians, avian and reptiles) were scanned in the wavelength range between 950 to 1650 nm. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to analyse the NIR spectra of the skull samples. Correct classification rates of 96% and 81% were obtained for the classification of skull bone samples according to avian and mammalian classes, respectively. Overall, a 91% correct classification rate was obtained for the classification of skull samples according to the class (mammalian and avian). This study demonstrates the potential of NIR spectroscopy coupled with chemometric as data processing, as a means of a rapid, non-destructive classification technique for skull bone samples.  相似文献   

15.
Principal component analysis (PCA) is widely used as an exploratory data analysis tool in the field of vibrational spectroscopy, particularly near-infrared (NIR) spectroscopy. PCA represents original spectral data containing large variables into a few feature-containing variables, or scores. Although multiple spectral ranges can be simultaneously used for PCA, only one series of scores generated by merging the selected spectral ranges is generally used for qualitative analysis. Alternatively, the combined use of an independent series of scores generated from separate spectral ranges has not been exploited.The aim of this study is to evaluate the use of PCA to discriminate between two geographical origins of sesame samples, when scores independently generated from separate spectral ranges are optimally combined. An accurate and rapid analytical method to determine the origin is essentially required for the correct value estimation and proper production distribution. Sesame is chosen in this study because it is difficult to visually discriminate the geographical origins and its composition is highly complex. For this purpose, we collected diffuse reflectance near-infrared (NIR) spectroscopic data from geographically diverse sesame samples over a period of eight years. The discrimination error obtained by applying linear discriminant analysis (LDA) was improved when separate scores from two spectral ranges were optimally combined, compared to the discrimination errors obtained when scores from singly merged two spectral ranges were used.  相似文献   

16.
Sârbu C  Pop HF 《Talanta》2005,65(5):1215-1220
Principal component analysis (PCA) is a favorite tool in environmetrics for data compression and information extraction. PCA finds linear combinations of the original measurement variables that describe the significant variations in the data. However, it is well-known that PCA, as with any other multivariate statistical method, is sensitive to outliers, missing data, and poor linear correlation between variables due to poorly distributed variables. As a result data transformations have a large impact upon PCA. In this regard one of the most powerful approach to improve PCA appears to be the fuzzification of the matrix data, thus diminishing the influence of the outliers. In this paper we discuss and apply a robust fuzzy PCA algorithm (FPCA). The efficiency of the new algorithm is illustrated on a data set concerning the water quality of the Danube River for a period of 11 consecutive years. Considering, for example, a two component model, FPCA accounts for 91.7% of the total variance and PCA accounts only for 39.8%. Much more, PCA showed only a partial separation of the variables and no separation of scores (samples) onto the plane described by the first two principal components, whereas a much sharper differentiation of the variables and scores is observed when FPCA is applied.  相似文献   

17.
Polymorphism is an important characteristic of pharmaceutical products because different polymorphs exhibit different physicochemical stabilities, dissolution rates, etc., which makes them different in therapeutic efficiency. Thus, it is important to control the polymorphic structure of pharmaceutical products. A spectroscopy method based on Fourier transform near infrared (FT-NIR) spectroscopy and chemometric techniques is introduced to classify paracetamol preparations according to polymorphic changes. X-ray diffraction (XRD) and FT-NIR studies were carried out on standard samples, paracetamol preparations (acetaminophen tablet), and also the additives. A direct comparison was performed between the spectroscopic data and those obtained by XRD. The NIR and XRD analyses of paracetamol preparations show some distinct differences, particularly in the Iranian tablet. These differences are found to be related to polymorphism and paracetamol purity. The cluster analysis (CA) and principal component analysis (PCA) were utilized to classify the paracetamol preparations. FT-NIR spectroscopy provides a simple, rapid and accurate qualitative analysis method for the identification of paracetamol polymorphs.  相似文献   

18.
This work explores a novel method for rearranging 1st order (one-way) infra-red (IR) and/or near infra-red (NIR) ordinary spectra into a representation suitable for multi-way modelling and analysis. The method is based on the fact that the fundamental IR absorption and the first, second, and consecutive overtones of NIR absorptions represent identical chemical information. It is therefore possible to rearrange these overtone regions of the vectors comprising an IR and NIR spectrum into a matrix where the fundamental, 1st, 2nd, and consecutive overtones of the spectrum are arranged as either rows or columns in a matrix, resulting in a true three-way tensor of data for several samples. This tensorization facilitates explorative analysis and modelling with multi-way methods, for example parallel factor analysis (PARAFAC), N-way partial least squares (N-PLS), and Tucker models. The vibrational overtone combination spectroscopy (VOCSY) arrangement is shown to benefit from the “order advantage”, producing more robust, stable, and interpretable models than, for example, the traditional PLS modelling method. The proposed method also opens the field of NIR for true peak decomposition—a feature unique to the method because the latent factors acquired using PARAFAC can represent pure spectral components whereas latent factors in principal component analysis (PCA) and PLS usually do not.  相似文献   

19.
The diagnostic ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy, NIR autofluorescence spectroscopy and the composite Raman and NIR autofluorescence spectroscopy, for in vivo detection of malignant tumors was evaluated in this study. A murine tumor model, in which BALB/c mice were implanted with Meth-A fibrosarcoma cells into the subcutaneous region of the lower back, was used for this purpose. A rapid-acquisition dispersive-type NIR Raman system was employed for tissue Raman and NIR autofluorescence spectroscopic measurements at 785-nm laser excitation. High-quality in vivo NIR Raman spectra associated with an autofluorescence background from mouse skin and tumor tissue were acquired in 5 s. Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were used to develop diagnostic algorithms for differentiating tumors from normal tissue based on their spectral features. Spectral classification of tumor tissue was tested using a leave-one-out, cross-validation method, and the receiver operating characteristic (ROC) curves were used to further evaluate the performance of diagnostic algorithms derived. Thirty-two in vivo Raman, NIR fluorescence and composite Raman and NIR fluorescence spectra were analyzed (16 normal, 16 tumors). Classification results obtained from cross-validation of the LDA model based on the three spectral data sets showed diagnostic sensitivities of 81.3%, 93.8% and 93.8%; specificities of 100%, 87.5% and 100%; and overall diagnostic accuracies of 90.6%, 90.6% and 96.9% respectively, for tumor identification. ROC curves showed that the most effective diagnostic algorithms were from the composite Raman and NIR autofluorescence techniques.  相似文献   

20.
This work aimed to classify the categories (produced by different processes) and brands (obtained from different geographical origins) of Chinese soy sauces. Nine variables of physico-chemical properties (density, pH, dry matter, ashes, electric conductivity, amino nitrogen, salt, viscosity and total acidity) of 53 soy sauce samples were measured. The measured data was submitted to such pattern recognition as cluster analysis (CA), principal component analysis (PCA), discrimination partial least squares (DPLS), linear discrimination analysis (LDA) and K-nearest neighbor (KNN) to evaluate the data patterns and the possibility of differentiating Chinese soy sauces between different categories and brands. Two clusters corresponding to the two categories were obtained, and each cluster was divided into three subsets corresponding to three brands by the CA method. The variables for LDA and KNN were selected by the Fisher F-ratio approach. The prediction ability of all classifiers was evaluated by cross-validation. For the three supervised discrimination analyses, LDA and KNN gave 100% predications according to the sample category and brand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号