首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precious metals such as Pd, Pt, and Rh have been utilized as the active components of many catalysts. Owing to the high cost of these metals, their loadings in catalysts must be reduced. However, reducing loadings without compromising catalytic performance is difficult. Precious metal catalysts are inevitably deactivated by severe reaction conditions (e.g., high temperature and pressure), which tend to increase of the size of the precious metal particles. Here, we review our recent work on the functionalization of supported precious metal catalysts by coverage with layers of metal oxides such as silica. Coverage with silica layers a few nanometers thick prevents aggregation of the metal particles as well as their detachment from the supports under severe reaction conditions. For example, coverage of supported Pt and Pd electrocatalysts in polymer electrolyte fuel cells with silica layers effectively improves catalyst durability by inhibiting not only particle aggregation but also the diffusion of dissolved metal species out of the catalysts. Coverage of supported precious metal photocatalysts with titania layers also enhances catalytic activity.  相似文献   

2.
Palladium supported on amorphous silica, mercapto-functionalized silica, amine functionalized silica, and zeolite Y has been studied as a catalyst in the Heck reaction of iodobenzene with butyl acrylate in the presence of triethylamine base and dimethylformamide solvent. Trapping of soluble Pd with poly(4-vinylpyridine), hot filtration tests during the batchwise Heck reaction, and reaction tests of effluents from a fixed bed continuous reactor support the conclusion that leached Pd is the active phase in the Heck reaction for all of the catalysts tested. Two different paths of Pd leaching that depend on the chemical state of the Pd were elucidated in this study. Oxidative addition of aryl halide to reduced Pd caused leaching of samples containing metallic particles. However, for a zeolite Y sample containing unreduced cationic Pd, the presence of triethylamine base was required to leach Pd into solution. These two paths of Pd leaching are consistent with the generally accepted mechanism of the Heck reaction.  相似文献   

3.
In this work we synthesized Pd(II) immobilized on mesoporous silica by N-heterocyclic carbene (NHC) ionic liquids (ILs) with different alkyl chain lengths. The catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), low-angle X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen sorption. The catalysts were used for the hydrogenation of alkenes and allyl alcohol. The results indicated that the catalysts were very active, selective, and stable. The selectivity for the hydrogenation of allyl alcohol to 1-propanol increased with the increase of the alkyl chain length of the ILs. The effect of supercritical CO(2) (scCO(2)) on the hydrogenation of allyl alcohol was also studied, and it was demonstrated that scCO(2) could enhance the selectivity of the reaction considerably. The XPS study showed that the valence of Pd(II) remained unchanged under hydrogenation conditions.  相似文献   

4.
Two types of Pd nanoparticle catalysts were prepared having 2–4 nm particle size using silica gel and porous polymer beads as solid supports. 2‐Pyridinecarboxaldehyde ligand was anchored on commercially available 3‐aminopropyl‐functionalized silica gel followed by Pd metal dispersion. Bead‐shaped cross‐linked poly(4‐vinylpyridine‐co‐styrene) gel was prepared by an emulsifier‐free emulsion polymerization of 4‐vinylpyridine, styrene and divinylbenzene in the presence of ammonium persulfate and subsequently dispersing the Pd metal on the synthesized polymer. These catalysts were characterized by SEM, TEM and ICP techiniques with respect to appearance, size and possible leaching out, respectively. Furthermore, the reactivity of these catalysts was tested on hydrogenation of various α,β‐unsaturated carbonyl compounds using aqueous solvent under a hydrogen balloon (1 atm). The results showed that the Pd dispersed on silica was a more efficient catalyst than Pd dispersed on polymer and the former could be recycled more than 10 times without considerable loss in activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Pd black was modified by a very low amount of Pt corresponding to a sub-monolayer (ML). Spontaneous displacement method was employed. The catalysts with 0.02–0.12 ML were characterized by cyclic voltammetry and COads stripping and were tested for HCOOH oxidation under the potentiodynamic and potentiostatic conditions. All the Pt@Pd catalysts were more active for HCOOH oxidation than Pd black. The Pt@Pd with 0.08 ML of Pt exhibited the highest activity with the maximum current density under the potentiodynamic conditions of 8 mA cm?2 (vs. 2.7 mA cm?2 on Pd black). Contrasting HCOOH oxidation kinetics on Pt@Pd and Pt@Au catalysts revealed that the current densities are higher, and the poisoning rate is lower on Pt@Pd catalyst. This was ascribed to an optimal strength of the Pt–adsorbate bond when Pt is supported on Pd and to a possible influence of the Pt atoms on the Pd substrate.  相似文献   

6.
Immobilization of catalysts on solid supports is a promising approach to combine the advantages of heterogeneous and homogeneous catalysts. Pd(PPh3)2Cl2, known as an extremely active homogeneous catalyst for the Sonogashira coupling reaction, has been immobilized on high-surface-area MCF (mesocellular foams)–type mesoporous silica powder modified with 3-aminopropyltriethoxysilane and subsequently with diphenylphosphine. The functionalized MCF-type silica and supported catalysts have been characterized by x-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), elemental analysis, nitrogen sorption porosimetry, and scanning electron microscopy (SEM). Such supported Pd catalysts have proven to be useful recyclable reagents for copper- and amine-free Sonogashira coupling reactions of haloaromatic compounds with terminal alkynes.  相似文献   

7.
Palladium, silver and palladium–silver catalysts supported on silica were prepared by coimpregnation of support with solution of AgNO3 and Pd(NO3)2. The catalysts were characterized by X-ray powder diffraction (XRD), temperature programmed reduction (TPR), time of flight ion mass spectrometry (ToF-SIMS), chemisorption of carbon monoxide and were tested in the reaction of selective oxidation of glucose to gluconic acid.

XRD and TPR studies have shown that an interaction between Pd and Ag on the surface of silica after oxidation at 500 °C and reduction at 260 °C leads to the formation of solid solutions.

ToF-SIMS images of the surface of 5% Ag/SiO2 catalyst after oxidation at 500 °C and reduction at 260 °C show that Ag atoms supported on silica are not distributed homogenously but tend to form regions of enhanced Ag concentration. Positive ions images of the surface of 5% Pd/SiO2 catalyst also display regions of enhanced concentration of Pd atoms, but they are more homogenously distributed on silica.

ToF-SIMS peak intensity ratio 108Pd+/107Ag+ for bimetallic 5% Pd–5% Ag/SiO2 catalysts has a lower value than that obtained for physical mixture 5% Pd/SiO2–5% Ag/SiO2 which indicates that the surface of bimetallic catalyst is enriched with silver atoms.  相似文献   


8.
Screening of different sources of Pd/C shows reagents of highly variable nanoparticle sizes and oxidation states of the metal. Typically, catalysts with higher surface area are viewed as likely to be the more reactive. In this paper a new form of Pd/C, “UC Pd” is described that is shown to contain larger nanoparticles yet it is the most reactive catalyst of those sold commercially for Sonogashira coupling reactions. UC Pd functions efficiently in the absence of a copper co‐catalyst, under very mild and “green” conditions using inexpensive 95 % EtOH at 50 °C. It is also the only form of Pd/C that can be recycled. In side‐by‐side reactions with several commercially available forms of Pd/C, none compete successfully with UC Pd under standardized conditions. Physical data obtained from extensive surface analysis using TEM, XRD, XPS, and CO‐TPD measurements lead to an explanation behind the unique reactivity of this new recyclable form of Pd/C.  相似文献   

9.
A new Pd/MgLa mixed oxide and the known Pd/MgAl hydrotalcite catalysts were applied and recycled successfully in catalytic transfer hydrogenation reactions in ionic liquids. Some α,β‐unsaturated carboxylic acid derivatives were hydrogenated in excellent yields. The catalysts were recycled without significant loss of activity. Besides that, a number of halogenated aromatic compounds were dehalogenated under similar catalytic transfer conditions.  相似文献   

10.
乔南利  李杨  李娜  张鑫  程杰  郝郑平 《催化学报》2015,(10):1686-1693
催化氧化技术是挥发性有机物(VOCs)减排与控制的主流技术之一,其关键之处在于高效催化材料的研究与开发,负载型贵金属催化材料由于其低温下优越的VOCs催化氧化性能,受到国内外研究者的广泛关注.对于负载型催化剂而言,载体的性质直接影响活性相的分散,反应物和生成物的扩散与吸脱附,是影响负载型催化剂性能的主要因素.近年来,多级孔结构硅基材料由于具有多级的孔道结构、高比表面积和大的孔体积,逐渐成为VOCs催化氧化材料的研究热点.本文采用溶胶凝胶法和浸渍法制备了系列双介孔结构硅基材料负载Pd催化剂(Pd/BMS-x),通过控制合成过程中氨水的用量以调节催化剂的介孔结构分布. X射线衍射(XRD)结果表明,所合成的Pd/BMS-x催化剂在~2.0°的衍射峰,类似于MCM-41的(100)晶面衍射峰,表明所有的样品均具有有序的介孔结构. N2吸脱附实验表明所有样品的比表面积均高于1000m2/g,孔径分布表明Pd/BMS-30样品为单一介孔结构,而Pd/BMS-5~Pd/BMS-20样品具有2.64 nm以及18–45 nm范围内的双介孔结构,且Pd/BMS-15样品介孔分布较为集中. Pd/BMS-x催化剂上甲苯催化氧化性能测试表明,双介孔结构的Pd/BMS-5~Pd/BMS-20催化剂上甲苯催化氧化活性远高于单一介孔结构的Pd/BMS-30催化剂,表明载体结构对催化剂性能有重要影响.其中, Pd/BMS-15催化剂性能最佳(T90为228°C)且具有较强的稳定性,250°C条件下,反应持续60h催化剂未见明显失活. SEM和TEM结果表明, Pd/BMS-15催化剂中Pd高度分散于载体上,平均粒径在~3 nm左右.而Pd/BMS-30催化剂中Pd颗粒间有明显的团聚,平均粒径在8~17 nm之间.分散度测试表明,单一介孔结构的Pd/BMS-30催化剂, Pd分散度仅为27%,而双介孔结构Pd/BMS-5–Pd/BMS-20催化剂介于39%到69%,其中Pd/BMS-15催化剂中Pd分散度高达69%.与常规单一介孔MCM-41和MCM-48负载Pd催化剂相比,在低空速(42000 h–1)条件下, Pd/BMS-15催化剂上甲苯催化氧化性能与Pd/MCM-41和Pd/MCM-48催化剂相当.高空速(70000h–1)条件下, Pd/BMS-15催化剂的活性远高于单一介孔的Pd/MCM-41和Pd/MCM-48催化剂. Pd/BMS-15催化剂独特的双介孔结构,有利于活性相Pd的分散、反应物的扩散和传输,特别是在高空速条件下,有利于反应物与活性相的接触,提高了材料的氧化反应性能.进一步考察了材料的水热稳定性,将11 vol%的水蒸气引入到反应体系中,测试结果表明水蒸气的加入导致Pd/MCM-41和Pd/MCM-48催化剂的甲苯催化氧化性能显著下降,反应500 min后甲苯转化率分别从100%下降到76%和81%,而对于Pd/BMS-15催化剂,水蒸气的引入并未导致其活性明显下降,从而表明Pd/BMS-15催化材料具有较高的水热稳定性.  相似文献   

11.
以含巯基官能团有机硅烷修饰的介孔材料MCM-41和SBA-15为载体, 采用浸渍-氢气还原法制备了高分散和高活性的负载型Pd催化剂. X射线衍射、N2吸附-脱附和透射电子显微镜表征结果显示, 所制Pd催化剂Pd-SH-MCM-41和Pd-SH-SBA-15具有很好的长程有序结构、分布均匀的孔径、高比表面积及高度分散的Pd颗粒. 苯酚加氢反应结果表明, 以Pd-SH-MCM-41和Pd-SH-SBA-15为催化剂时, 在80℃, 1.0MPa反应1h, 苯酚转化率达99%以上, 环己酮选择性为98%. 它们的催化活性为商业Pd/C催化剂的5倍, Pd/MCM-41和Pd/SBA-15催化剂的3倍. 这可归因于介孔材料表面修饰的巯基官能团对Pd的锚定作用, 避免了Pd颗粒的团聚, 使其高度分散在介孔材料上.  相似文献   

12.
CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programmed reaction.The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones.Model studies were performed to better understand the oxidation state,reactivities and stabilities of partially oxidized Pd surfaces under CO oxidation reaction conditions using an in situ infrared reflection absorption spectrometer(IRAS).Three O/Pd(100)model surfaces,chemisorbed oxygen covered surface,surface oxide and bulk-like surface oxide,were prepared and characterized by low-energy electron diffraction(LEED)and Auger electron spectroscopy(AES).The present work demonstrates that the oxidized palladium surface is less active for CO oxidation than the metallic surface,and is unstable under the reaction conditions with sufficient CO.  相似文献   

13.
Pd(II) complexes with N-ligands were synthesized and tested for Suzuki coupling reaction. These complexes were also heterogenized on silica. The resulting site-isolated catalysts showed a high catalytic activity. The most stable complex was supported N-(propyl)ethylenediamine, which did not display any notable leaching. The effects of reaction conditions and the nature of the boronic acid derivative on the conversion of the starting compounds were studied.  相似文献   

14.
We report that dendrimer-encapsulated Pd nanoparticles having a diameter of approximately 1.7 nm are effective and general catalysts for coupling aryl halides to organostannanes (the Stille reaction) under mild conditions. The significant results of this study are that the Stille reaction is catalyzed by dendrimer-encapsulated Pd nanoparticles in very good yield, in aqueous solution at 23 degrees C, and using only 0.100 atom % of Pd as catalyst.  相似文献   

15.
Hydrodeoxygenation of oleic acid as model compound of vegetable oils over Pd/zeolite catalysts was investigated under conditions of 375−400 °C and 15 bar in a semi batch stirred autoclave reactor. Pd/zeolite-1 and Pd/zeolite-2 catalysts were prepared using microwave polyol method with different treatment conditions. The liquid hydrocarbon products named Renewable Diesel have suitable density and viscosity, and quite high cetane index in accordance with standard commercial diesel and ASTM D-975. The IR spectrum of Renewable Diesel products have similarities with commercial diesel. The oxygenation removal pathway of oleic acid over Pd/zeolite 1 catalyst was primarily compiled through decarboxylation at 375 °C.  相似文献   

16.
In this work, the contribution of the pairwise H(2) addition to the overall reaction mechanism was studied under the systematic variation of both the Pd particle size and the properties of the catalyst support using the hydrogenation of propene and propyne over supported Pd catalysts as representative examples. For Pd supported on alumina, silica and zirconia, only propene formed upon hydrogenation of propyne with para-H(2) exhibits hyperpolarization. In contrast, propane formed in hydrogenation of propyne or propene is not hyperpolarized. This demonstrates the existence of different routes of H(2) addition to double and triple bonds on supported Pd catalysts. The unique ability of Pd/TiO(2) catalysts to add H(2) in a pairwise manner not only to the triple but also to the double bond is demonstrated. This finding indicates that the Pd-support interaction is of primary importance in determining not only the magnitude of the hyperpolarization of the NMR lines of the reaction products but even the involvement of the pairwise H(2) addition and hence the mechanism of heterogeneous hydrogenation. The comparative analysis of the selectivities toward pairwise H(2) addition suggested the existence of different surface active sites responsible for all three reaction routes: the direct total hydrogenation of propyne into propane, its selective hydrogenation into propene, and hydrogenation of propene into propane. A reaction scheme which accounts for the formation of the observed hyperpolarized and non-polarized reaction products in propyne and propene hydrogenation with para-H(2) over supported Pd catalysts is suggested. For the first time, application of the PHIP technique allowed us to demonstrate that hydrogenation of propene does not take place in the presence of propyne on supported Pd catalysts.  相似文献   

17.
Palladium catalysts embedded on molecular sieves (MS3A and MS5A) were prepared by the adsorption of Pd(OAc)2 onto molecular sieves with its in situ reduction to Pd0 by MeOH as a reducing agent and solvent. 0.5% Pd/MS3A and 0.5% Pd/MS5A catalyzed the hydrogenation of alkynes, alkenes, and azides with a variety of coexisting reducible functionalities, such as nitro group, intact. It is noteworthy that terminal alkenes of styrene derivatives possessing electron-donating functionalities on the benzene nucleus were never hydrogenated under 0.5% Pd/MS5A-catalyzed conditions, while internal alkenes of 1-propenylbenzene derivatives were readily reduced to the corresponding alkanes.  相似文献   

18.
Both Keggin-type phosphotungstic acid (HPW) and Pd are not prominent catalysts towards the oxygen reduction (ORR), but their composite Pd-HPW catalyst produces a significantly higher electrochemical activity for the ORR in acidic media. The novel composite catalyst was synthesized by self-assembly of HPW on multi-walled carbon nanotubes (MWCNTs) via the electrostatic attraction between negatively charged HPW and positively charged poly(diallyldimethylammonium (PDDA)-wrapped MWCNTs, followed by dispersion of Pd nanoparticles onto the HPW-PDDA-MWCNT assembly. The as-prepared catalyst was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). TEM images show that Pd nanoparticles were uniformly dispersed on the surface of MWCNTs even when the Pd loading was increased to 60 wt%. Electrochemical activity of the catalysts for the ORR was evaluated by steady state polarization measurements using a rotating disk electrode. Compared with the acid treated MWCNTs, Pd nanoparticles supported on the HPW-assembled MWCNTs show a much higher ORR activity that is comparable to conventional Pt/C catalysts. The high electrocatalytic activities could be related to high dispersion of Pd nanoparticles as well as synergistic effects originating from the high proton conductivity of HPW. The Pd/HPW-PDDA-MWCNTs system as the cathode catalyst in proton exchange membrane fuel cells is demonstrated.  相似文献   

19.
Pd was loaded on ultra stable Y (USY) zeolites prepared by steaming NH(4)-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H? bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc)?. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H?O gave the highest activity (TOF = 61,000 h?1), which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OH(strong)) generated as a result of steaming had a profound effect on the catalytic activity of Pd.  相似文献   

20.
赵东越  杨岳溪  高中楠  尹萌欣  田野  张静  姜政  于晓波  李新刚 《催化学报》2021,42(5):795-807,中插15-中插20
稀燃发动机通过提高空燃比来改善燃油经济性,减少CO2排放.但由于空燃比较高,稀燃发动机尾气中的NOx无法通过传统的三效催化技术有效消除.为了解决这一问题,适用于稀燃条件的NOx储存还原(NSR)技术得到了开发和应用.传统的NSR催化剂以贵金属Pt作为其氧化还原活性中心.Pt基催化剂具有较高的NOx消除活性,然而热稳定性差,高温下易团聚失活.据报道,Pd具有比Pt更好的热稳定性和抗硫性,且能够在更低的温度下活化还原剂,促进NOx还原.但De-NOx反应中的活性Pd物种至今仍无定论,这对设计高效的Pd基NSR催化剂提出了挑战.本文设计制备了具有高活性的Pd负载型钙钛矿催化剂(Pd-La0.7Sr0.3MnO3).其中钙钛矿组分的加入提高了Pd基催化剂的NO氧化能力和热稳定性,并提供了可用于NOx储存的碱性位点.通过调节金属-载体相互作用,使Pd催化剂在NSR反应气氛下发生了自活化现象,活化后催化剂的NOx消除活性由56.1%提高到90.1%,同时副产物N2O的选择性降低.XRD、XAFS和XPS等表征结果显示,在反应气氛下催化剂中的Pd2+被部分还原为高活性的Pd0物种.相较于Pd2+,Pd0表现出更强的活化C3H6的性能,从而提高了催化剂在富燃阶段的NOx还原效率.结合XPS、CO化学吸附和动力学的实验结果,计算得出Pd0位点的NOx还原速率是Pd2+位点的8倍,从实验现象和动力学计算两个角度分别证明Pd0物种具有更优异的NOx还原活性.然而,Pd0物种的生成需要适当强度的金属-载体相互作用.通过与传统的Pd/BaO/Al2O3催化剂进行对比研究,发现金属-载体相互作用过强时,在富燃阶段Pd2+物种难以被还原,且还原得到的Pd0物种并不稳定,会在随后的贫燃阶段被快速重新氧化为Pd2+.强相互作用虽然可以降低Pd物种粒径,提高Pd的分散度,但由于无法产生高活性的Pd0物种,催化剂的NOx消除性能显著降低.此外,相较于传统的Pd/BaO/Al2O3和Pt/BaO/Al2O3催化剂,Pd负载型钙钛矿催化剂具有更为优异的NO氧化能力,且储存位碱性适中,因而表现出更强的抗H2O、CO2和SO2的性能,具有良好的应用前景.本文的结果说明了金属-载体相互作用对催化剂活性的显著影响,同时也为理解和设计应用于动态氧化/还原气氛的金属催化剂提供了新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号