首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
There have been many successful efforts to enrich phosphopeptides in complex protein mixtures by the use of immobilized metal affinity chromatography (IMAC) and/or metal oxide affinity chromatography (MOAC) with which mass spectrometric analysis of phosphopeptides has become state of the art in specialized laboratories, mostly applying nanoLC electrospray ionization mass spectrometry-based investigations. However, widespread use of these powerful techniques is still not achieved. In this study, we present a ready-to-use phosphopeptide enrichment procedure using commercially available TiO(2)-loaded pipette tips in combination with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analyses. Using α-casein as a model protein and citric acid as additive during sample loading, a similar enrichment success can be achieved as compared to applying 2,5- dihydroxy benzoic acid (DHB) for this task. But the DHB-inherited drawbacks are eliminated. In addition, we show that combining DHB and 2,4,6-trihydroxy acetophenone (THAP) as matrix for MALDI-MS measurements retains the sensitivity of DHB for phosphopeptide analysis but adds the homogenous crystallization properties of THAP, enabling preparation of evenly distributed matrix surfaces on MALDI-MS anchor targets, a prerequisite for automated MALDI- MS analyses. Tripartite motif-containing protein 28 and stathmin are two examples for which successful phosphopeptide enrichment of either sodium dodecyl sulfate polyacrylamide gel electrophoresis or two-dimensional gel electrophoresis-separated proteins is shown. Finally, high resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry after phosphopeptide enrichment suggests that chemical dephosphorylation may occur as a side reaction during basic elution of phosphopeptides bound to MOAC surfaces, suggesting that proteome-wide phosphopeptide analyses ought to be interpreted with caution. In contrast, in-depth analysis of phosphopeptide/non-phosphorylated peptide siblings may be used to estimate stability differences of phosphorylation sites in individual proteins, possibly adding valuable information on biological regulation processes.  相似文献   

2.
李莎  王露  王迎  陈平 《分析测试学报》2020,39(3):416-422
目前磷酸化肽段鉴定主要依赖于质谱技术,但磷酸化肽段的低丰度性以及来自非磷酸化肽段的干扰等因素,影响质谱的分析与鉴定。因此质谱分析前磷酸化肽段的富集,是深入研究磷酸化蛋白质组学的先决条件。该文介绍了磷酸化蛋白质组学中传统的以及新建立的一些磷酸化肽段分离富集方法的原理及优缺点,这些方法包括固相金属离子亲和色谱法(IMAC)、金属氧化亲和色谱法(MOAC)、强阳/阴离子交换色谱法(SCX/SAX)、亲水相互作用色谱法(HILIC)、静电排斥亲水相互作用色谱法(ERLIC)、化学衍生法、MALDI靶盘富集法以及多种富集方法相结合。  相似文献   

3.
Titanium dioxide metal oxide affinity chromatography (TiO2‐MOAC) is widely regarded as being more selective than immobilized metal‐ion affinity chromatography (IMAC) for phosphopeptide enrichment. However, the widespread application of TiO2‐MOAC to biological samples is hampered by conflicting reports as to which experimental conditions are optimal. We have evaluated the performance of TiO2‐MOAC under a wide range of loading and elution conditions. Loading and stringent washing of peptides with strongly acidic solutions ensured highly selective enrichment for phosphopeptides, with minimal carryover of non‐phosphorylated peptides. Contrary to previous reports, the addition of glycolic acid to the loading solution was found to reduce specificity towards phosphopeptides. Base elution in ammonium hydroxide or ammonium phosphate provided optimal specificity and recovery of phosphorylated peptides. In contrast, elution with phosphoric acid gave incomplete recovery of phosphopeptides, whereas inclusion of 2,5‐dihydroxybenzoic acid in the eluant introduced a bias against the recovery of multiply phosphorylated peptides. TiO2‐MOAC was also found to be intolerant of many reagents commonly used as phosphatase inhibitors during protein purification. However, TiO2‐MOAC showed higher specificity than immobilized gallium (Ga3+), immobilized iron (Fe3+), or zirconium dioxide (ZrO2) affinity chromatography for phosphopeptide enrichment. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) was more effective in detecting larger, multiply phosphorylated peptides than liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS), which was more efficient for smaller, singly phosphorylated peptides. Copyright © 2009 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

4.
The enrichment of phosphopeptides using immobilized metal ion affinity chromatography (IMAC) and subsequent mass spectrometric analysis is a powerful protocol for detecting phosphopeptides and analyzing their phosphorylation state. However, nonspecific binding peptides, such as acidic, nonphosphorylated peptides, often coelute and make analyses of mass spectra difficult. This study used a partial chemical tagging reaction of a phosphopeptide mixture, enriched by IMAC and contaminated with nonspecific binding peptides, following a modified beta-elimination/Michael addition method, and dynamic mass analysis of the resulting peptide pool. Mercaptoethanol was used as a chemical tag and nitrilotriacetic acid (NTA) immobilized on Sepharose beads was used for IMAC enrichment. The time-dependent dynamic mass analysis of the partially tagged reaction mixture detected intact phosphopeptides and their mercaptoethanol-tagged derivatives simultaneously by their mass difference (-20 Da for each phosphorylation site). The number of new peaks appearing with the mass shift gave the number of multiply phosphorylated sites in a phosphopeptide. Therefore, this partial chemical tagging/dynamic mass analysis method can be a powerful tool for rapid and efficient phosphopeptide identification and analysis of the phosphorylation state concurrently using only MS analysis data.  相似文献   

5.
In our current work, we describe how open tubular‐immobilized metal‐ion affinity chromatography (OT‐IMAC) capillary columns connected to a solid phase microextraction (in‐tube SPME) device can be used for the enrichment of phosphopeptides. A phosphonate modified silica nanoparticle (NP)‐deposited capillary was prepared by liquid phase deposition (LPD), and used for the immobilization of Fe3+, Zr4+ or Ti4+. The enrichment capacities of three different OT‐IMAC capillary columns were compared by using tryptically digested α‐casein as sample. The improved extraction efficiency in our technique was demonstrated by comparing to a directly modified capillary, and a comparison of phosphopeptide extraction from simple and complex samples was tested for both modes. Our results show that the NP‐IMAC‐Zr4+ capillary column can be used to selectively isolate phosphopeptides from real samples, and can enrich for β‐casein phosphopeptides from concentrations as low as 1.7×10?9 M.  相似文献   

6.
提出一种除盐-富集串联用于磷酸肽富集研究的思路。选用C18柱和铈(Ⅳ)修饰的壳聚糖材料进行脱盐实验,以制备的基于聚合物基体螯合Fe3+的亲和色谱材料为富集材料。将直接富集和串联策略应用到标准品和血清中,研究结果表明,该富集材料具有高选择性和高灵敏度(1.6 fmol),铈(Ⅳ)修饰的壳聚糖材料前提下的串联策略能明显降低样品的复杂性。相比直接富集方法,能够提高磷酸化肽的覆盖率。  相似文献   

7.
Protein phosphorylation is one of the most important post-translational modifications. Due to the dynamic nature and low stoichiometry of the protein phosphorylation, enrichment of phosphopeptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Many metal oxides such as titanium dioxide and zirconium dioxide have been successfully applied to isolation and enrichment of phosphopeptides. Recently, niobium pentoxide was proved to have the ability for selective enrichment of phosphopeptides. Considering the proximity of tantalum to niobium, we supposed that Ta2O5 can be used as affinity probes for phosphopeptide enrichment. In the work, we synthesized Fe3O4@Ta2O5 magnetic microspheres with core–shell structure for selective enrichment of phosphopeptides. To demonstrate its ability for selective enrichment of phosphopeptides, we applied Fe3O4@Ta2O5 magnetic microspheres to isolation and enrichment of the phosphopeptides from tryptic digestion of standard proteins and real samples, and then the enriched peptides were analyzed by matrix-assisted laser desorption mass spectrometry analysis (MALDI-MS) or liquid chromatography coupled to electrospray ionization mass spectrometry (LC–ESI-MS). Experiment results demonstrate that Ta2O5 coated-magnetic microspheres show the excellent potential for selective enrichment of phosphopeptides.  相似文献   

8.
Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.  相似文献   

9.
Titanium dioxide (TiO2)-mediated phosphopeptide enrichment has been introduced as an effective method for extracting phosphopeptides from highly complex peptide mixtures. Chemical labeling by beta-elimination/Michael addition is also useful for increasing mass intensity in phosphopeptide analysis. Both of these methods were coupled in order to simultaneously enrich phosphopeptides and allow for detection and sequencing of the enriched peptides with high mass sensitivity. Phosphopeptides were successfully enriched on TiO2 beads without the use of any hydroxy acid additives like 2,5-dihydroxybenzoic acid. Labeling was accomplished on-bead with a guanidinoethanethiol (GET) tag containing a guanidine moiety. These GET-labeled derivatives were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). GET labeling converted phosphoserine into guanidinoethylcysteine, a structural arginine-mimic. In particular, GET-labeled lysine-terminated phosphopeptides showed dramatically increased peak intensities compared to those of the corresponding intact phosphopeptides. Additionally, the on-bead labeling minimized manipulation steps and sample loss. The coupled technique was also further validated by applying to the analysis of phosphopeptides from complex tryptic digests of phosphoprotein mixtures.  相似文献   

10.
对组成复杂的生物样品中的低丰度磷酸化肽进行预富集,能够消除高丰度非磷酸化肽等干扰组分,从而提高磷酸化肽在质谱分析中的灵敏度,获得更好的检出和鉴定结果.在磷酸化肽富集过程中,对磷酸化肽具有选择性亲和作用的富集材料是实现对磷酸化肽特异高效富集的关键,多种具有不同类型亲和作用的富集材料已在磷酸化肽富集研究中得到了应用;而在材料形貌、富集操作形式、磷酸化肽富集特异性等方面,研究者们也不断在现有磷酸化肽富集材料的基础上进行多样化的改进.本文分别从不同类型亲和作用的磷酸化肽富集材料以及磷酸化肽富集方法改进两方面,对近年来磷酸化肽富集方法的研究进展进行了评述.  相似文献   

11.
林威  王京兰  应万涛  钱小红 《色谱》2012,30(8):763-769
为了提高二氧化钛富集磷酸肽法对磷酸肽的富集效率,以6种标准蛋白酶切肽段混合物为研究对象,对二氧化钛富集磷酸肽过程中的乙腈比例、三氟乙酸比例、二氧化钛用量等条件分别进行了优化。结果表明在乙腈含量为80%(v/v),三氟乙酸含量为1%(v/v),二氧化钛用量与需要富集肽段的质量比为40:1的条件下,可以取得较好的富集效果。将优化后的富集方法应用于腾冲嗜热厌氧菌磷酸化蛋白质的分析,初步鉴定到25个磷酸化蛋白质,为进一步研究这种极端环境下生存的低等生物的生命活动提供了参考信息。  相似文献   

12.
The location of phosphorylation plays a vital role for the elucidation of biological processes. The challenge of low stoichiometry of phosphoproteins and signal suppression of phosphopeptides by nonphosphopeptides in mass spectrometry (MS) analysis makes the selective enrichment of phosphopeptides prior to MS analysis necessary. Besides the immobilized metal affinity chromatography (IMAC) method, some affinity methods based on nanoparticles displayed a higher enrichment efficiency for phosphopeptides such as Fe(3)O(4)/TiO2 and Fe(3)O(4)/ZrO(2) nanoparticles. To further improve the selectivity and compatibility of the affinity methods, a novel strategy based on magnetic nanoparticles coated with zirconium phosphonate for the enrichment of phosphopeptides has been developed in this study. Under optimized experimental conditions, 1 x 10(-9) M phosphopeptides in 50 microL tryptic digest of beta-casein could be enriched and identified successfully. Reliable results were also obtained for 1 x 10(-8) M phosphopeptides in 50 microL tryptic digest of beta-casein in the presence of nonphosphopeptides from a tryptic digest of bovine serum albumin (BSA) over 20 times in concentration. The performance of nanoparticles for use in a real sample was further demonstrated by employing the strong cation-exchange chromatography (SCX) fraction of a tryptic digest of a protein extract from Chang liver cells as a model sample. Experimental results show that the nanoparticles can be easily and effectively used for enrichment of phosphopeptides in low concentration. Most importantly, our approach is more compatible with commonly used SCX strategies than Fe(3+)-IMAC. The proposed method thus has great potential for future studies of large-scale phosphoproteomes.  相似文献   

13.
探索并建立了一种快速、 简便且高通量定量磷酸化蛋白质组的策略, 即采用连续互补的磷酸化富集方法SMOAC(Sequential enrichment of metal oxide affinity chromatography)结合TMT(Tandem mass tag)标记技术定量磷酸化蛋白质组学. 以3例经紫草素处理的及3例正常的人肝癌 HepG2 细胞为实验材料, 经Trypsin酶解后的肽段用TMT10-plex试剂进行等量标记, 标记肽段先经TiO2富集, 收集包含磷酸化肽段的洗脱液, 接着用次氮基三醋酸铁(Fe-NTA)对TiO2的流穿液和清洗液进行二次富集, 再次收集包含磷酸化肽段的洗脱液. 整个实验流程做2组, 对其中一组的2次洗脱液分别分析, 另一组的2次洗脱液合并分析. 在SMOAC的2次洗脱液合并分析中鉴定到4263个磷酸化蛋白上超过13000条磷酸化肽, 富集特异性>97%, 其中被定量的磷酸化蛋白为3848个, 占总鉴定量的90%以上. 研究结果表明, SMOAC 能够有效提高磷酸化肽段的鉴定效率, 且能与TMT等量标记试剂结合, 实现对少量蛋白样品的磷酸化蛋白定量分析.  相似文献   

14.
In this study, a new strategy named two‐step IMAC is demonstrated as a novel prelude to MS analysis of phosphoproteome by increasing the enrichment factor of phosphoproteins/phosphopeptides from a protein mixture. In this method, the first IMAC was performed at the protein level to extract the minute amount of phosphoproteins present in the sample. During this step, nonphosphoproteins and other undesired chemicals or inhibitors were excluded. After tryptic digestion, the second IMAC was performed at the peptide level to enrich phosphopeptides present in the tryptic digest, and the eluent from the second IMAC was analyzed by MALDI‐MS. It is particularly noticeable that the eluent from the first IMAC can be directly digested by trypsin without buffer exchange. Our results revealed that β‐casein that was spiked in a protein mixture can be successfully extracted by the first IMAC at a concentration of less than 1–3%, and the two phosphopeptides of β‐casein with single and four phosphorylation sites, respectively, can be captured by the second IMAC. It was found that the two‐step IMAC method could significantly reduce non‐specific bindings from unwanted proteins and greatly enhance the MALDI‐MS signal of phosphopeptide ions compared to the typical one‐step IMAC, by which only IMAC at the peptide level was performed. Two‐step IMAC was also found to tolerate a greater amount and a greater concentration range of proteins than one‐step IMAC, which is especially important when analyzing complicated unknown samples. Furthermore, the MS signal of phosphopeptide ions did not appear to be degraded by the presence of biological matrixes, such as the cell lysate in which the β‐casein was spiked in.  相似文献   

15.
A new type of IMAC material, with ATP as the chelating ligand, was synthesized and applied to capture phosphopeptides. For the first time, the approach for phosphopeptide enrichment could provide selectivity under 5000-fold dilution by nonphosphopeptides, and sensitivity of on-target enrichment at 3 amol.  相似文献   

16.
Protein phosphorylation regulates a wide range of cellular functions and is associated with signaling pathways in cells. Various strategies for enrichment of phosphoproteins or phosphopeptides have been developed. Here, we developed a novel sequential phosphopeptide enrichment method, using magnetic iron oxide (Fe3O4) and titanium dioxide (TiO2) particles, to detect mono‐ and multi‐phosphorylated peptides. In the first step, phosphopeptides were captured on Fe3O4 particles. In a subsequent step, any residual phosphopeptides were captured on TiO2 particles. The particles were eluted and rinsed to yield phosphopeptide‐enriched fractions that were combined and analyzed using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The validity of this sequential Fe3O4/TiO2 enrichment strategy was demonstrated by the successful enrichment of bovine α‐casein phosphopeptides. We then applied the sequential Fe3O4/TiO2 enrichment method to the analysis of phosphopeptides in L6 muscle cell lysates and successfully identified mono‐ and multi‐phosphorylated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Selective detection of phosphopeptides from complex biological samples is a challenging and highly relevant task in many proteomics applications. In this study, a novel phosphopeptide enrichment approach based on the strong interaction of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres with phosphopeptides has been developed. With a well-defined core-shell structure, the Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres not only have a shell of aluminum oxide, giving them a high-trapping capacity for the phosphopeptides, but also have magnetic property that enables easy isolation by positioning an external magnetic field. The prepared Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres have been successfully applied to the enrichment of phosphopeptides from the tryptic digest of standard phosphoproteins beta-casein and ovalbumin. The excellent selectivity of this approach was demonstrated by analyzing phosphopeptides in the digest mixture of beta-casein and bovine serum albumin with molar ratio of 1:50 as well as tryptic digest product of casein and five protein mixtures. The results also proved a stronger selective ability of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres over Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC (immobilized metal affinity chromatography) resin, and TiO(2) beads. Finally, the Al(2)O(3) coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. These results show that Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres are very good materials for rapid and selective separation and enrichment of phosphopeptides.  相似文献   

18.
李鹏章  王粤博 《化学进展》2012,(9):1785-1793
磷酸化作用是最重要的蛋白质翻译后修饰方式之一,它是蛋白质组学的一个重要分支,在细胞识别、细胞信息传递、基因表达和新陈代谢等方面发挥着重要作用。采用适当方法对磷酸化肽进行分析有助于我们更好地了解生理病理机制。但是直接进行质谱分析时磷酸化肽的信号强度会受到无机盐以及大量非磷酸化肽的抑制,选择性差。为解决这一难题,在质谱分析前要对磷酸化肽进行选择性富集。本文回顾了几种常用的磷酸化肽富集方法,介绍了每种方法的发展状况和常用材料,其中包括固定金属离子亲和色谱法、金属氧化物富集法、强阴阳离子交换色谱法和MALDI靶板富集法。最后总结了各种富集方法的优缺点,对有效的磷酸化肽富集策略进行了前景展望。  相似文献   

19.
In general, phosphopeptides are specifically adsorbed to the surface of the material at the initial step of phosphopeptide enrichment methods. Thus, nonphosphopeptides can be removed from the media by following the appropriate washing steps. After sufficient washing, the phosphopeptides are eluted from the surface of the material completely for further analysis. Performing the elution of phosphopeptides fully in the enrichment step is very important in terms of determining the whole phosphoproteome profile of a sample by subsequent mass spectrometric analysis. Materials containing anion exchanger groups such as amines on the surface can be used as a selective stationary phase in phosphopeptide enrichment methods. Positively charged groups on the surface of this type of material interact with the phosphate groups of phosphopeptides through electrostatic interactions. Such interactions can be basically manipulated by changing the pH of the medium or replacing the salts present in the solution. Phosphopeptides attached to the surface of anion-exchange materials may be displaced with the addition of highly acidic compounds such as sulfonates to the enrichment medium. Here, we used various sulfonates as desorption agents for the elution of retained phosphopeptides from the surface of an anion-exchange material. We found that differences in the chemical structures and properties of the sulfonates remarkably affected phosphopeptide retrieval from the anion-exchange material.  相似文献   

20.
The analysis of large phosphoproteins by mass spectrometry is a particular challenge, in many cases, because of the small proportion of phosphopeptides in the presence of a large number of non-phosphorylated peptides. In addition, phosphopeptides are generally available in dilute solutions. Thus, methods to specifically identify phosphopeptides at low concentrations are important. In this work, on-line Fe(III) immobilized metal-ion affinity chromatography (IMAC)-CE-electrospray ionization MS was developed and applied to sub-pmol analysis of phosphopeptides. Phosphopeptides bind Fe(III) with high selectivity. The IMAC resin is packed directly at the head of the CE column. After the phosphopeptides are bonded to the resin and washed, they are eluted at high pH and separated by CE. This method has several advantages: (1) selective retention and pre-concentration of phosphopeptides on an Fe(III)-IMAC resin; (2) a pre-wash of the sample to remove salts and buffers that are not suited for CE separation or ESI operation; (3) facile fabrication with common tools and chemicals (less than 10 min); (4) adaptation to commercial CE instruments without any modifications. The applications of IMAC-CE-MS are demonstrated by the analysis of phosphopeptide mixtures and a phosphoprotein digest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号