首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyelectrolyte poly(ethylenenimine), PEI, is shown to strongly influence the adsorption of the anionic-nonionic surfactant mixture of sodium dodecyl sulfate, SDS, and monododecyl hexaethylene glycol, C(12)E(6), at the air-solution interface. In the presence of PEI, the partitioning of the mixed surfactants to the interface is highly pH-dependent. The adsorption is more strongly biased to the SDS as the pH increases, as the PEI becomes a weaker polyelectrolyte. At surfactant concentrations >10(-4) M, the strong interaction and adsorption result in multilayer formation at the interface, and this covers a more extensive range of surfactant concentrations at higher pH values. The results are consistent with a strong interaction between SDS and PEI at the surface that is not predominantly electrostatic in origin. It provides an attractive route to selectively manipulate the adsorption and composition of surfactant mixtures at interfaces.  相似文献   

2.
Neutron reflectivity and surface tension have been used to characterize the adsorption of the polyelectrolyte/ionic surfactant mixture of poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) at the air-water interface. The surface tension behavior and adsorption patterns show a strong dependence upon the solution pH. However, the SDS adsorption at the interface is unexpectedly most pronounced when the pH is high (when the polymer is essentially a neutral polymer) and when the polymer architecture is branched rather than linear. For both the branched and the linear PEI polymer/surfactant complex formation results in a significant enhancement of the amount of SDS at the interface, down to surfactant concentrations approximately 10(-6) M. For the branched PEI a transition from a monolayer to a multilayer adsorption is observed, which depends on surfactant concentration and pH. In contrast, for the linear polymer, only monolayer adsorption is observed. This substantial increase in the surface activity of SDS by complexation with PEI results in spontaneous emulsification of hexadecane in water and the efficient wetting of hydrophobic substrates such as Teflon. In regions close to charge neutralization the multilayer adsorption is accentuated, and more extensively ordered structures, giving rise to Bragg peaks in the reflectivity data, are evident.  相似文献   

3.
The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH.  相似文献   

4.
The manipulation of the adsorption of the anionic surfactant, sodium dodecyl sulfate, SDS, onto hydrophilic silica by the polyelectrolytes, polyethyleneimine, PEI, ethoxylated PEI, and the polyamine, pentaethylenehexamine, has been studied using neutron reflectometry. The adsorption of a thin PEI layer onto hydrophilic silica promotes a strong reversible adsorption of the SDS through surface charge reversal induced by the PEI at pH 7. At pH 2.4, a much thicker adsorbed PEI layer is partially swelled by the SDS, and the SDS adsorption is now no longer completely reversible. At pH 10, there is some penetration of SDS and solvent into a thin PEI layer, and the SDS adsorption is again not fully reversible. Ethoxylation of the PEI (PEI-EO(1) and PEI-EO(7)) results in a much weaker and fragile PEI and SDS adsorption at both pH 3 and pH 10, and both polymer and surfactant desorb at higher surfactant concentrations (>critical micellar concentration, cmc). For the polyamine, pentaethylenehexamine, adsorption of a layer of intermediate thickness is observed at pH 10, but at pH 3, no polyamine adsorption is evident; and at both pH 3 and pH 10, no SDS adsorption is observed. The results presented here show that, for the amine-based polyelectrolytes, polymer architecture, molecular weight, and pH can be used to manipulate the surface affinity for anionic surfactant (SDS) adsorption onto polyelectrolyte-coated hydrophilic silica surfaces.  相似文献   

5.
Polyethyleneimine (PEI) and Microfibrillated cellulose (MFC) have been used to buildup polyelectrolyte multilayers (PEM) on silicone oxide and silicone oxynitride surfaces at different pH values and with different electrolyte and polyelectrolyte/colloid concentrations of the components. Consecutive adsorption on these surfaces was studied by in situ dual-polarization interferometry (DPI) and quartz crystal microbalance measurements. The adsorption data obtained from both the techniques showed a steady buildup of multilayers. High pH and electrolyte concentration of the PEI solution was found to be beneficial for achieving a high adsorbed amount of PEI, and hence of MFC, during the buildup of the multilayer. On the other hand, an increase in the electrolyte concentration of the MFC dispersion was found to inhibit the adsorption of MFC onto PEI. The adsorbed amount of MFC was independent of the bulk MFC concentration in the investigated concentration range (15-250 mg/L). Atomic force microscopy measurements were used to image a MFC-treated silicone oxynitride chip from DPI measurements. The surface was found to be almost fully covered by randomly oriented microfibrils after the adsorption of only one bilayer of PEI/MFC. The surface roughness expressed as the rms-roughness over 1 microm2 was calculated to be 4.6 nm (1 bilayer). The adsorbed amount of PEI and MFC and the amount of water entrapped by the individual layers in the multilayer structures were estimated by combining results from the two analytical techniques using the de Feijter formula. These results indicate a total water content of ca. 41% in the PEM.  相似文献   

6.
Adsorption of cationic high molecular weight polyacrylamides (CPAM) (M(w) is about 800 kDa) with different fractions of cationic units tau = 0.09 and tau = 0.018 onto silica surface was studied over a wide range of pH (4-9) and KCl concentration (c(s) = 10(-3)-10(-1) M) by in-situ null ellipsometry. We discuss how the adsorbed layer depends on the bulk conditions as well as kinetically responds to changes in solution conditions. The adsorbed amount Gamma of CPAM increases with pH for all studied electrolyte concentrations until a plateau Gamma is reached at pH > 6. At low pH we observed an increase in adsorbed amount with electrolyte concentration. At high pH there is no remarkable influence of added salt on the values of the adsorbed amount. The thickness of adsorbed polymer layers, obtained by ellipsometry, increases with electrolyte concentration and decreases with pH. At low c(s) and high pH the polyelectrolyte adsorbs in a flat conformation. An overcompensation of the surface charge (charge reversal) by the adsorbed polyelectrolyte is observed at high c(s) and low pH. To reveal the reversibility of the polyelectrolyte adsorption with respect to the adsorbed amount and layer thickness, parameters such as polyelectrolyte concentration (c(p)), c(s), and pH were changed during the experiment. Generally, similar adsorbed layer properties were obtained independent of whether adsorption was obtained directly to initially bare surface or by changing pH, c(s), or the concentration of polyelectrolyte solution in the presence of a preadsorbed layer, provided that the coverage of the preadsorbed layer was low. Once a steady state of the measured parameters (Gamma, d) was reached, experimental conditions were restored to the original values and corresponding changes in Gamma and adsorbed layer thickness were recorded. For initially low surface coverage it was impossible to restore the layer properties, and in this case we always ended up with higher coverage than the initial values. For initial high surface coverage it was usually possible to restore the initial layer properties. Thus, we concluded that polyelectrolyte appears only partially reversible to changes in the solution conditions due the slow rearrangement process within the adsorbed layer.  相似文献   

7.
Deposition kinetics of polystyrene latex (averaged particle size of 0.66 microm) on mica covered by poly(ethylene imine) (PEI), a cationic polyelectrolyte having an average molecular mass of 75,000 g mol(-1), was studied using the impinging-jet method. The hydrodynamic radius of PEI, determined by PCS measurements, was 5.3 nm. The electrophoretic mobility of PEI was measured as a function of pH for ionic strengths of 10(-3) and 10 (-2) M, which made it possible one to determine the amount of electrokinetic charge of the molecule and its zeta potential. Formation of the polyelectrolyte layer on mica was followed by measuring the streaming potential in the parallel-plate channel. From these measurements, the dependence of the apparent zeta potential of mica on the surface coverage of PEI was determined. The amount of adsorbed PEI on mica was calculated from the convective diffusion theory. These results were quantitatively interpreted in terms of the theoretical model postulating a particle-like adsorption mechanism for PEI with not too significant shape deformation upon adsorption. On the other hand, the Gouy-Chapman model postulating the adsorption in the form of flat disks was proved inappropriate. After the surface was fully characterized, particle deposition experiments were carried out with the aim of finding the correlation between the polymer coverage and the initial rate of latex particle deposition. In the range of small polyelectrolyte coverage, a monotonic relation between the polymer coverage and the initial deposition rate of particles, as well as the jamming coverage, was found. For Theta(PEI)>0.25, the initial particle deposition rate attained the value predicted from the convective diffusion theory for homogeneous surfaces. These results were interpreted theoretically by postulating that an effective immobilization of colloid particles occurred on local polyelectrolyte assemblages containing between two and three PEI molecules.  相似文献   

8.
Stable graphene suspensions were prepared through ultrasonic exfoliation followed by surface modification with the cationic polyelectrolyte poly(ethyleneimine) (PEI). The stability of the suspensions was found to be dependent upon the pH of the solution and the molecular weight of the PEI adsorbed. For the graphene sheets with adsorbed PEI with a molecular weigh of 600 Da, the particles were stabilised through an increased electrostatic repulsion at low pH inferred from in an increase in the measured zeta potential of the particles. However, the graphene with higher molecular weight PEI (70 kDa) was stable over a comparatively larger pH range through a combination of electrostatic repulsion at low pH and steric repulsion at elevated pH. Thus, solution conditions allowing the control of the colloidal sized graphene particles can be easily tuned through judicious management of solution conditions as well as polymer layer properties.  相似文献   

9.
The effect of alkyl chain length and electrolyte on the adsorption of sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface has been investigated by surface tension and neutron reflectivity. The variations in the patterns of adsorption and surface tension behavior with alkyl chain length and electrolyte are discussed in the context of the competition between the formation of surface active surfactant/polyelectrolyte complexes and polyelectrolyte/surfactant micelle complexes in solution. A theoretical approach based on the law of mass action has been used to predict the surface effects arising from the competition between the formation of polyelectrolyte/surfactant surface and solution complexes and the formation of free surfactant micelles. This relatively straightforward model is shown to reproduce the principal features of the experimental results.  相似文献   

10.
The polyethyleneimine (PEI)–water–silica gel absorption system was used as a model system to investigate the relationship between diffusion into the porous structure, adsorption rate, and molecular weight of the polymer. Three silica gels, Porasil A, B, and and C having a range of characteristic porosity were used as adsorbents. Adsorption of PEI on Porasil C, which has the majority of its pores much larger than the dimensions of the adsorbate molecule, increased initially with increased molecular weight but became nearly constant at higher molecular weight. Little increase in adsorption occurred for this silica gel with increased ionic strength or with increased pH between 9.5 and 10.8. In contrast, adsorption increased sharply with increased ionic strength and for the same pH range on Porasil A. Molecular weight dependence was reversed. Adsorption decreased with increased molecular weight on Porasil A. In this case, the molecular size of PEI investigated was the same as the majority of pore apertures in the adsorbent. Solution environments (i.e., pH and ionic strength) that decrease the size of the PEI molecule and its affinity for the anionic silica gel surface, thus enabling it to more readily diffuse into the smaller porous regions of the adsorbent, are the apparent causes of the very large adsorption increase. Electrostatic repulsion between PEI molecules do not appear greatly to affect adsorption. Similar adsorption behavior has been reported in the literature for the PEI–cellulosic fiber adsorption system. Maximum adsorption on Porasil A occurred at pH 10.8, the same maximum generally reported for adsorption of PEI on cellulosic fibers. In this case, the silica gel (Porasil A) was found to have a pore size distribution and specific surface area of the same magnitude as cellulosic fibers prepared in the expanded state.  相似文献   

11.
The effects of the addition of the polyelectrolyte, poly(ethyleneimine), PEI, on the adsorption of the mixed surfactants of sodium dodecylsulfate, SDS, and dodecyldimethylaminoacetate, dodecyl betaine, at the air-water interface have been investigated using neutron reflectivity and surface tension. In the absence of PEI the SDS and dodecyl betaine surfactants strongly interact and exhibit synergistic adsorption at the air-water interface. The addition of PEI, at pH 7 and 10, results in a significant modification of the surface partitioning of the SDS/dodecyl betaine mixture. The strong surface interaction at high pH (pH 7 and 10) between the PEI and SDS dominates the surface behavior. For solution compositions in the range 20/80-80/20 mol ratio dodecyl betaine/SDS at pH 7 the surface composition is strongly biased towards the SDS. At pH 10 a similar behavior is observed for a solution composition of 50/50 mol ratio dodecyl betaine/SDS. This strong partitioning in favor of the SDS at high pH is attributed to the strong ion-dipole attraction between the SDS sulfate and the PEI imine groups. At pH 3, where the electrostatic interactions between the surfactant and the PEI are dominant, the dodecyl betaine more effectively competes with the SDS for the interface, and the surface composition is much closer to the solution composition.  相似文献   

12.
The adsorption of carboxymethylcellulose (CMC) in the presence or absence of the surfactants: anionic SDS, nonionic Triton X-100 and their mixture SDS/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the alumina surface (Al2O3) was studied. In each measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of Triton X-100 and the largest when the mixture of SDS/Triton X-100 was used. These results are a consequence of formation of complexes between the CMC and the surfactant particles. Moreover, the dependence between the amount of surfactants’ adsorption and the CMC initial concentration was measured. It comes out that the surfactants’ adsorption amount is not dependent on the CMC initial concentration and moreover, it is unchanged in the whole measured concentration range. The influence of kind of electrolyte, its ionic strength as well as pH of a solution on the amount of the CMC adsorption at alumina surface was also measured. The amount of CMC adsorption is larger in the presence of NaCl than in the presence of CaCl2 as the background electrolyte. It is a result of the complexation reaction between Ca2+ ions and the functional groups of CMC belonging to the same macromolecule. As far as the electrolyte ionic strength is concerned the increase of CMC adsorption amount accompanying the increase of electrolyte ionic strength is observed. The reason for that is the ability of electrolyte cations to screen every electrostatic repulsion in the adsorption system. Another observation is that the increase of pH caused the decrease of CMC adsorption. The explanation of this phenomenon is connected with the influence of pH on both dissociation degree of polyelectrolyte and kind and concentration of surface active groups of the adsorbent.  相似文献   

13.
In the present paper, the effect of different neutral polymers on the self-assemblies of hyperbranched poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) has been investigated at different ionization degrees of the polyelectrolyte molecules. The investigated uncharged polymers were poly(ethyleneoxide), poly(vinylpyrrolidone) and dextran samples of different molecular mass. Dynamic light scattering and electrophoretic mobility measurements demonstrate that the high molecular mass PEO or PVP molecules adsorb considerably onto the surface of the PEI/SDS nanoparticles. At appropriate concentrations of PVP or PEO, sterically stabilized colloidal dispersions of the polyelectrolyte/surfactant nanoparticles with hydrophobic core and hydrophilic corona can be prepared. These dispersions have considerable kinetic stability at high ionic strengths where the accelerated coagulation of the PEI/SDS nanoparticles results in precipitation in the absence of the neutral polymers. In contrast, the addition of dextran does not affect considerably the kinetic stability of PEI/SDS mixtures because of its low adsorption affinity towards the surface of the polyelectrolyte/surfactant nanoparticles.  相似文献   

14.
A thermodynamic analysis of the interaction between fourteen different molar mass poly(ethylene oxide)s (PEO) and sodium dodecyl sulfate (SDS) based on the measured surfactant-binding isotherms is given. The surfactant-binding isotherms were determined by the potentiometric method in the presence of 0.1 M inert electrolyte (NaBr). It was found that there is no PEO/SDS complex formation if M(PEO) < 1000. In the molecular weight range 1000 < M(PEO) < 8000, the critical aggregation concentration (cac) and the surfactant aggregation number are decreasing as the polymer molecular weight increases. The saturated bound surfactant amount is proportional to the number concentration of the polymer in this molecular weight range. If M(PEO) exceeds approximately 8000, the cac does not depend on the polymer molar mass, and the saturated bound amount of the surfactant becomes proportional to the mass concentration of the polymer. It was also observed that independently of the polymer molecular weight the surfactant aggregation number increases as the equilibrium surfactant monomer concentration increases from the cac to the critical micellar concentration (cmc). Finally, it was demonstrated that only one polymer molecule is involved in the complex formation independently of the polymer molecular weight.  相似文献   

15.
Summary: The deposition and the nanostructure of polyelectrolyte multilayers (PEM) of branched poly(ethyleneimine)/poly(acrylic acid) (PEI/PAC) was studied in dependence of the adsorption time (tADS) of the individual steps. PEM were reproducibly deposited applying up to z = 20 adsorption steps at the fixed pH combination of 10/4 and polyelectrolyte concentration cPEL = 0.005 M in a flow cell using an automated valve system. in situ ATR-FTIR spectroscopy and SFM were used for quantitative determination of deposited amount and thickness, respectively. A linear relation between PEL band integrals and thickness of thin PEM films was found. Varying tADS from 0.5 to 5 min in each of the adsorption steps resulted in a steep rise of the deposited PEM amount. For tADS > 5 min the deposition did only marginally increase. Evidence for the release of outermost located PEI upon PAC immersion (even step) and of outermost PAC upon PEI immersion (odd step) was obtained. SFM images on consecutively deposited PEM-6 showed a slight increase in structure size and roughness for increasing tADS. These studies help to prepare polyelectrolyte based films with controlled thickness for the interaction with biofluids in the biomedical and food field.  相似文献   

16.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

17.
The dynamic surface elasticity, dynamic surface tension, and ellipsometric angles of mixed aqueous poly(diallyldimethylammonium chloride)/sodium dodecylsulfate solutions (PDAC/SDS) have been measured as a function of time and surfactant concentration. This system represents a typical example of polyelectrolyte/surfactant complex formation and subsequent aggregation on the nanoscale. The oscillating barrier and oscillating drop methods sometimes led to different results. The surface viscoelasticity of mixed PDAC/SDS solutions are very close to those of mixed solutions of sodium polystyrenesulfonate and dodecyltrimethylammonium bromide but different from the results for some other polyelectrolyte/surfactant mixtures. The abrupt drop in surface elasticity when the surfactant molar concentration approaches the concentration of charged polyelectrolyte monomers is caused by the formation of microparticles in the adsorption layer. Aggregate formation in the solution bulk does not influence the surface properties significantly, except for a narrow concentration range where the aggregates form macroscopic flocks. The mechanism of the observed relaxation process is controlled by the mass exchange between the surface layer and the flocks attached to the liquid surface.  相似文献   

18.
We have used neutron reflectometry to investigate the behavior of a strong polyelectrolyte brush on a sapphire substrate, grown by atom-transfer radical polymerization (ATRP) from a silane-anchored initiator layer. The initiator layer was deposited from vapor, following treatment of the substrate with an Ar/H(2)O plasma to improve surface reactivity. The deposition process was characterized using X-ray reflectometry, indicating the formation of a complete, cross-linked layer. The brush was grown from the monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC), which carries a strong positive charge. The neutron reflectivity profile of the swollen brush in pure water (D(2)O) showed that it adopted a two-region structure, consisting of a dense surface region ~100 ? thick, in combination with a diffuse brush region extending to around 1000 ? from the surface. The existence of the diffuse brush region may be attributed to electrostatic repulsion from the positively charged surface region, while the surface region itself most probably forms due to polyelectrolyte adsorption to the hydrophobic initiator layer. The importance of electrostatic interactions in maintaining the brush region is confirmed by measurements at high (1 M) added 1:1 electrolyte, which show a substantial transfer of polymer from the brush to the surface region, together with a strong reduction in brush height. On addition of 10(-4) M oppositely charged surfactant (sodium dodecyl sulfate), the brush undergoes a dramatic collapse, forming a single dense layer about 200 ? in thickness, which may be attributed to the neutralization of the monomers by adsorbed dodecyl sulfate ions in combination with hydrophobic interactions between these dodecyl chains. Subsequent increases in surfactant concentration result in slow increases in brush height, which may be caused by stiffening of the polyelectrolyte chains due to further dodecyl sulfate adsorption.  相似文献   

19.
ζ-potential measurements on LUVs allow to evidence the influence of pH, ionic salt concentration, and polyelectrolyte charge on the interaction between polyelectrolyte (chitosan and hyaluronan) and zwitterionic lipid membrane. First, chitosan adsorption is studied: adsorption is independent on the chitosan molecular weight and corresponds to a maximum degree of decoration of 40% in surface coverage. From the dependence with pH and independence with MW, it is concluded that electrostatic interactions are responsible of chitosan adsorption which occurs flat on the external surface of the liposomes. The vesicles become positively charged in the presence of around two repeat units of chitosan added per lipid accessible polar head in acid medium down to pH = 7.2. Direct optical microscopy observations of GUVs shows a stabilization of the composite liposomes under different external stresses (pH and salt shocks) which confirms the strong electrostatic interaction between the chitosan and the lipid membrane. It is also demonstrated that the liposomes are stabilized by chitosan adsorption in a very wide range of pH (2.0 < pH < 12.0). Then, hyaluronan (HA), a negatively charged polyelectrolyte, is added to vesicles; the vesicles turn rapidly negatively charged in presence of adsorbed HA Finally, we demonstrated that hyaluronan adsorbs on positively charged chitosan-decorated liposomes at pH < 7.0 leading to charge inversion in the liposome decorated by the chitosan-hyaluronan bilayer. Our results demonstrate the adsorption of positive and/or negative polyelectrolyte at the surface of lipidic vesicles as well as their role on vesicle stabilization and charge control.  相似文献   

20.
Solvent isotope effects on the interaction between the hyperbranched cationic polyelectrolyte, polyethylene imine (PEI), and the anionic surfactant sodium dodecyl sulfate (SDS) were investigated using potentiometric titration and eletrophoretic mobility measurements. In the basic pH range, a significantly higher fraction of the amine groups was found to be protonated when the PEI was dissolved in D2O compared to H2O at the same pH/pD. The difference in polymer charge in the two solvents decreases gradually with decreasing pH, and it completely diminishes at around pH = 4. Electrophoretic mobility measurements of PEI/SDS complexes at different pH values correlated very well with these observations. At pH/pD approximately 9 a much higher mobility of the PEI/SDS complexes was found in D2O than in H2O at low surfactant concentrations, and the charge neutralization point shifted to a considerably larger surfactant concentration in heavy water. These results can be explained by the significantly higher charge density of the PEI in D2O compared to H2O. However, at the natural pH/pD as well as at pH = 4 and pD = 4 conditions the PEI molecules have roughly equal charge densities, which result in very similar charged characteristics (mobilities) of the PEI/SDS complexes as well as the same charge neutralization SDS concentration. It can be concluded that extreme care must be taken in the general analysis of those experiments in which weak polyelectrolyte/surfactant aggregates are investigated in heavy water, and then these observations are correlated with structures of the same system in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号