首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO2–C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0–10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO2–C matrix and have spherical shape with average diameter of ~10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T B ~ 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be ~4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H C) develops appreciably below T B, and follows the H C ∝ [1 – (T/T B)0.5] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H C to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.  相似文献   

2.
Suspended single-walled carbon nanotubes (SWCNTs) between SiO2 pillars via a direct lithographic route using a simple mixture of catalyst precursor [Co(III) acetylacetonate, Co(acac)3] and conventional electron beam resist (ma-N2403) were fabricated. The catalytic electron beam resist (Cat-ER) layer plays dual roles as a catalyst and a resist layer for the growth and alignment of CNTs, respectively. The structure of the grown nanotube was characterized by Raman spectroscopy (633 nm laser excitation). Nanotubes grown from Cat-ER with Co(acac)3 show the typical Raman spectra of SWCNTs which are characterized by the strong tangential bands near to 1590 cm−1 and radial breathing modes (RBMs) in the low frequency region (<300 cm−1). The calculated diameter of the probed nanotubes individually corresponds to the range 0.86-1.77 nm.  相似文献   

3.
Pressure effects on magnetic properties of two La0.7Ca0.3MnO3 nanoparticle samples with different mean particle sizes were investigated. Both the samples were prepared by the glycine-nitrate method: sample S—as-prepared (10 nm), and sample S900—subsequently annealed at 900 °C for 2 h (50 nm). Magnetization measurements revealed remarkable differences in magnetic properties with the applied pressure up to 0.75 GPa: (i) for S sample, both transition temperatures, para-to-ferromagnetic T C = 120 K and spin-glass-like transition T f = 102 K, decrease with the pressure with the respective pressure coefficients dT C/dP = −2.9 K/GPa and dT f/dP = −4.4 K/GPa; (ii) for S900 sample, para-to-ferromagnetic transition temperature T C = 261 K increases with pressure with the pressure coefficient dT C/dP = 14.8 K/GPa. At the same time, saturation magnetization M S recorded at 10 K decreases/increases with pressure for S/S900 sample, respectively. Explanation of these unusual pressure effects on the magnetism of sample S is proposed within the scenario of the combined contributions of two types of disorders present in the system: surface disorder introduced by the particle shell, and structural disorder of the particle core caused by the prominent Jahn–Teller distortion. Both disorders tend to vanish with the annealing of the system (i.e., with the nanoparticle growth), and so the behavior of the sample S900 is similar to that previously observed for the bulk counterpart.  相似文献   

4.
We demonstrate that the quality of the as-grown single-walled carbon nanotubes (SWCNTs) can be effectively improved by the addition of the B ingredient in the Fe/MgO catalyst. The as-grown SWCNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The SWCNTs prepared by the pure Fe/MgO catalyst have relatively low graphite crystallinity and are coated by much amorphous carbon. The intensity ratio of the D- and G-bands (ID/IG) in Raman spectra is relatively high (0.098 for laser 532 nm and 0.075 for laser 785 nm). The SWCNTs grown from the Fe/MgO catalyst doped with 0.1 part of B have more regular graphite structure with little amorphous carbon. The ID/IG values reduced remarkably (0.041 for laser 532 nm and 0.040 for laser 785 nm). The effect would be attributed to the inhibitory action of the doped B on the formation of radical hydrocarbon species for the formation of SWCNTs.  相似文献   

5.
We studied the structure and magnetic properties of co-sputtered Co1−xCx thin films using a transmission electron microscope (TEM) and a SQUID magnetometer. These properties were found to depend critically on deposition temperature, TS, and composition, x. Generally, phase separation into metallic Co and graphite-like carbon phases proceeds with increasing TS and decreasing x. Plan view and cross-sectional TEM images of the films prepared showed that Co grains about 10–20 nm in diameter and 30–50 nm in height are three-dimensionally separated by graphite-like carbon layers 1–2 nm thick. Optimum magnetic properties with saturation magnetization of 380 emu/cc and coercivity of 400 Oe were obtained for a film with x=0.5 and TS=350°C.  相似文献   

6.
Mixtures of regularly coiled and straight multi-walled carbon nanotubes (MWNTs) were synthesised on alumina supported Co catalysts prepared by pH controlled, wet impregnation. The synthesis reaction was performed under C2H2:H2:N2 at 750 °C in a fluidised-bed for 30 min. Scanning electron microscopy/energy dispersive X-ray spectroscopy shows good distribution of the active Co particles on the surface of the alumina support. Determined from 10 individual SEM images from the same product batch, the CNTs present are typically from 10 to 40 nm in diameter. Thermogravimetric analysis (TGA) and Raman spectroscopy indicate the total oxidative weight loss is independent of pH during catalyst preparation. This study is the first to report the use of a fluidised-bed for the synthesis of coiled MWNTs, using alumina supported Co catalysts.  相似文献   

7.
Combining iron (Fe) and tungsten (W) as a bimetallic catalyst, we synthesized high-yield single-wall carbon nanotubes (SWCNTs) of narrow diameter distribution by a hydrogen–argon arc discharge method. Raman spectra indicate that the diameters of SWCNTs prepared using the Fe–W catalysts are about 0.5 nm smaller than those using Fe catalyst alone. The transmission electron microscopy and X-ray diffraction studies show that the SWCNTs prepared by the bimetallic catalyst coexist with few graphite flakes and other amorphous carbon. At the W content of 2–4 at%, tungsten cannot be found in the SWCNT samples. Thus by using a simple two-step purification process, high-purity SWCNT samples can be obtained. We have demonstrated the growth mechanism for the high melting metal (such as W, Mo)–Fe catalyst synthesis of SWCNTs by the arc discharge method.  相似文献   

8.
The performance of Co catalysts supported on MgO at different Co loading (10%-75%) for the formation of carbon nanotubes through acetylene decomposition at 600 °C with H2/C2H2 mixture for 1 h is investigated. The yield of MWNTs increases with an increase in Co loading (up to 50%). Starting from 1 g of catalyst precursor, about 8 g of MWNTs was obtained. The XRD patterns of catalyst precursor indicate the presence of cobalt in oxidic phase that eventually transformed into the catalytically active Co nanoparticles (12-18 nm) under the influence of acetylene and was responsible for the growth of coiled-like multi-walled CNTs as revealed by SEM and HRTEM images. It is suggested that bending in coil shaped MWNTs has the potential for functionalization for its biomedical applications.  相似文献   

9.
Single-walled carbon nanotubes (SWCNTs) were synthesized using the high-pressure carbon monoxide disproportionation process. The SWCNT diameter, diameter distribution and yield can be varied depending on the process parameters. Important parameters are the temperature, the pressure, the CO gas flow rate and the nozzle injection velocity and geometry for the injection of reactant gas into the reaction zone. Carbon nanotubes as small as 1.0 nm in diameter have been produced. The purity and yield of the deposited material were increased with increasing CO gas flow by means of rapid heating of the gas mixture and using an optimum injection profile. Highly pure SWCNTs were produced at 1250 K, pressures between 5 and 10 bar and gas in the turbulent flow regime in the cold line of 2000–2500 sccm CO. The raw materials were purified by oxidation in high vacuum at 523 K in wet Ar/20 vol. % O2 to remove SWCNT carbon-like impurities and to oxidize the iron catalyst nanoparticles. The iron oxides were removed by chemical treatment in concentrated HCl/C2H5OH mixture solution. The SWCNTs were analyzed by scanning electron microscopy, high-resolution transmission electron microscopy, atomic absorption spectroscopy and optical absorption spectroscopy to determine the purity, the diameter and diameter distribution, the chemical composition and the catalyst morphology, as well as the optical properties of deposited SWCNTs in dependence on the synthesis parameters. PACS 29.30.-h  相似文献   

10.
Cluster-cluster coalescence process of monodispersed Co clusters with mean diameter d = 8.5 and 13 nm deposited a plasma-gas-condensation-type cluster beam deposition system was investigated by in situ electrical conductivity measurements and ex situ scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and analyzed by percolation concept. The electrical conductivity measurement and TEM observation indicated that, below temperature T≈ 100°C, the Co clusters in the assemblies maintain their original structure as deposited at room temperature, while that the inter-cluster coalescence takes place at T > 100°C, although the size distribution and the interface morphology of the clusters showed no marked change at substrate temperatures T s≤200°C. Received 29 November 2000  相似文献   

11.
徐绍言  陆博翘  郑亚茹  孙雁 《物理学报》2006,55(5):2529-2533
测量了纯金属Fe,Co,Ni的热电势发现,在居里点附近热电势随温度的变化关系曲线均呈现先凹后凸的反常现象.由曲线的转折处可确定三个居里温度,即铁磁态居里点Tf,居里点TC和顺磁居里点θp.由曲线可见,金属由铁磁态到顺磁态的相转变,存在一定温度间隔的转变过程,居里温度是这一过程的中间温度.分析曲线表明,温度在Tf与TC范围有空穴参与导电,说明磁性负载者是d带中的空穴.对于温度在TC与θp范围可能存在短程有序进行了讨论. 关键词: Fe Co Ni 热电势 居里温度  相似文献   

12.
The effect of oxidant species forming an alcohol molecule for hot-filament chemical vapor deposition (HFCVD) on single-walled carbon nanotubes (SWCNTs) growth has been investigated. To use a graphite rod as a filament for HFCVD to decompose alcohol sources, contamination-free sample surface can be obtained and SWCNTs are successively and densely grown at a lower temperature than those by conventional thermal CVD. It is found that the higher the molecule number of alcohol among CH3OH, C2H5OH, and 2-C3H7OH is, the lower the initial growth rate of SWCNTs is. As for CH3OH, diameter distribution of SWCNTs is dynamically changed with the growth time passed, and a negative growth rate is observed at the later stage of growth. The growth kinetics depending on the alcohol sources is discussed on the basis of a capability of the oxidant species to burn away SWCNTs and deactivation of Co catalysts used for the growth.  相似文献   

13.
We report on the identification of efficient combinations of catalyst, carbon feedstock, and temperature for the ethanol chemical vapour deposition (CVD) growth of single-wall carbon nanotubes (SWCNTs) onto silicon substrates.Different catalyst preparations, based on organometallic salts (Co, Fe, Mo, Ni acetate, and bimetallic mixtures), have been spin coated onto thermally grown silicon dioxide on silicon chips to perform tests in a temperature range between 500 and 900 °C.The samples have been then characterized by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. Assuming the growth of high-quality isolated nanotubes as target, the ratio in Raman spectra between the intensity of the G peak and of the D peak has been used as the main parameter to evaluate the performance of the catalytic process. A comparison made for both single metals and bimetallic mixtures points out best conditions to achieve efficient CVD growth of SWCNTs.  相似文献   

14.
Thin carbon films have been deposited in vacuum (∼10−4 Pa) on Si substrates by pulsed laser ablation of a graphite target using a Nd:YAG laser operating in the near infrared region (λ=1064 nm). The samples have been deposited at different substrate temperatures (T sub) ranging from room temperature (RT) to 800°C. X-ray diffraction analysis established the progressive formation of nanosized graphene structures as T sub increased. In fact, film structure evolves from almost amorphous to nanostructured phase characterized by graphene layers oriented perpendicularly to the film plane. The film density, evaluated by X-ray reflectivity measurements, is strongly affected by T sub. At RT the film density is similar to the graphite one, while it decreases at higher T sub. The electrical properties of the samples have been characterized by field emission measurements. The parameters describing the emitter properties (threshold field E th and field enhancement factor β) have been evaluated using variable anode-to-cathode distance method. Samples deposited at low T sub have shown the best emission properties, presenting lower E th and larger β values than those deposited at higher T sub. This is mainly attributed to the sensible density variation, which is in competition with the slighter augment of mean nanoparticle size.  相似文献   

15.
The phase boundary of the binary liquid system CS2+CH3NO2 is studied over nearly six decades in reduced temperature 3×10−6<ε=(T CT)/T C<2×10−1 and over the composition range 8-98 mole % of CS2. The critical parameters areT C=335.132K andx C=57.34 mole % of CS2. A single critical exponentβ=0.315±0.004 fits the observations over the entire range with no indication ofβ increasing to the classical value of 1/2 far away fromT C. The diameter of the coexistence curve shows a rectilinear behaviour only far away fromT C. NearT C, the deviation ΔX from the rectilinear law seems to fit a curve of the form ΔX=fε7/8 exp (− h), the derivative of which has a singularity like that of specific heat. An ambiguity in the analysis of the data in terms of mole fractions and volume fractions is pointed out. It is also suggested that the curvature of the diameter may be much weaker in a liquid-gas system and hence might have escaped detection.  相似文献   

16.
《Solid State Ionics》2006,177(7-8):803-811
The purpose of this study was to synthesize highly dispersed Ni/Al2O3 catalysts and to develop a suitable hydrogen-temperature programmed desorption (H2-TPD) method for the determination of nickel metal surface area, dispersion, and crystallite sizes. Several highly dispersed Ni/Al2O3 catalysts with a Ni loading between 15 and 25 wt.% were synthesized. The reducibility of catalysts was determined by temperature programmed reduction (TPR) experiments. All catalysts exhibited a single reduction peak with a maximum rate of H2 consumption (Tmax in TPR) occurring below 450 °C. Three different H2-TPD methods were employed to determine the amount of H2 chemisorbed. In TPD-1, a 10% H2/Ar mixture was used for catalyst pre-reduction and surface saturation by cooling down from Tmax in TPR to room temperature. In TPD-2, the catalyst surface after pre-reduction was flushed with Ar at Tmax in TPR + 10 °C. The TPD-3 was similar to the TPD-2, but used 100% H2 instead of 10% H2/Ar mixture. In all three TPD methods, the profiles exhibited 2 domains of H2 desorption peaks, one below 450 °C, referred to as type-1 peaks, and attributed to H2 desorbed from exposed fraction of Ni atoms, and the other above 450 °C, denoted as type-2 peaks, and assigned to the desorption of H2 located in the subsurface layers and/or to spillover H2. Flushing the reduced catalyst surface in Ar at Tmax in TPR + 10 °C in TPD-2 and TPD-3 removed most of the H2 located in the subsurface layers/ spillover H2. The amount of H2 chemisorbed to form a monolayer on the reduced Ni/Al2O3 catalysts was determined quantitatively from the TPD peak areas of type-1 peaks in TPD-1, and from both type-1 and type-2 peaks in TPD-2 and TPD-3. The Ni metal surface area, dispersions and crystallite sizes were calculated from the chemisorption data and the values were compared with those obtained using the static chemisorption method. Both TPD-2 and TPD-3 gave chemisorption results similar to that obtained from the static method.  相似文献   

17.
Fused silica plates have been implanted with 40 keV Co+ or Ni+ ions to high doses in the range of (0.25–1.0) × 1017 ions/cm2, and magnetic properties of the implanted samples have been studied with ferromagnetic resonance (FMR) technique supplemented by transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. The high-dose implantation with 3d-ions results in the formation of cobalt and nickel metal nanoparticles in the irradiated subsurface layer of the SiO2 matrix. Co and Ni nanocrystals with hexagonal close packing and face-centered cubic structures have a spherical shape and the sizes of 4–5 nm (for cobalt) and 6–14 nm (for nickel) in diameter. Room-temperature FMR signals from ensembles of Co and Ni nanoparticles implanted in the SiO2 matrix exhibit an out-of-plane uniaxial magnetic anisotropy that is typical for thin magnetic films. The dose and temperature dependences of FMR spectra have been analyzed using the Kittel formalism, and the effective magnetization and g-factor values have been obtained for Co- and Ni-implanted samples. Nonsymmetric FMR line shapes have been fitted by a sum of two symmetrical curves. The dependences of the magnetic parameters of each curve on the implantation dose and temperature are presented.  相似文献   

18.
Time differential perturbed angular correlation measurements of the 133–482 keVγ-γ cascade of181Ta in Hf-doped YBa2Cu3O7−x are presented. The181Hf precurser nuclei are incorporated into the sample by thermal neutron irradiation. Two quadrupole interaction frequencies are observed in the as-irradiated sample:v Q1=161±10 MHz with intensityf 1=75%, asymmetry parameterη 1=0.32 and damping parameter Λ1=0.42, andv Q2=1108±40 MHz withf 2=25%,η 2=0.62, and Λ2=0.60. On annealing the sample in air at various temperaturesT a and quenching to room temperature,f 1 remained nearly constant forT a<600°C andv Q1 for all annealing temperatures indicating that these are insensitive to oxygen stoichiometry. This frequency is interpreted to be due to181Hf substitutingY sites. BeyondT a=600°C,f 1 increased and reached a constant value of 90% forT a=800°C. The value ofv Q2 showed a slight variation between 1086 and 1160 MHz, whilef 2 remained nearly constant at 25% forT a<600°C. This component is identified to be due to181Hf substituting Cu 1 sites in the Cu-O chains of YBCO. Above 600°Cv Q2 decreased and reached a value of 808 MHz beyond 750°C.  相似文献   

19.
Nickel (Ni) and cobalt (Co) metal nanowires were fabricated by using an electrochemical deposition method based on an anodic alumina oxide (Al2O3) nanoporous template. The electrolyte consisted of NiSO4 · 6H2O and H3BO3 in distilled water for the fabrication of Ni nanowires, and of CoSO4 · 7H2O with H3BO3 in distilled water for the fabrication of the Co ones. From SEM and TEM images, the diameter and length of both the Ni and Co nanowires were measured to be ∼ 200 nm and 5–10 μm, respectively. We observed the oxidation layers in nanometer scale on the surface of the Ni and Co nanowires through HR–TEM images. The 3 MeV Cl2+ ions were irradiated onto the Ni and Co nanowires with a dose of 1 × 1015 ions/cm2. The surface morphologies of the pristine and the 3 MeV Cl2+ ion-irradiated Ni and Co nanowires were compared by means of SEM, AFM, and HR–TEM experiments. The atomic concentrations of the pristine and the 3 MeV Cl2+ ion-irradiated Ni and Co nanowires were investigated through XPS experiments. From the results of the HR–TEM and XPS experiments, we observed that the oxidation layers on the surface of the Ni and Co nanowires were reduced through 3 MeV Cl2+ ion irradiation.  相似文献   

20.
An analysis is made of some general laws governing a new physical effect, i.e., the spontaneous penetration of particles (atoms, C60 molecules) adsorbed on a two-dimensional graphite film on a metal (Ir, Re, Pt, Mo,...) to beneath the graphite film (intercalation). It is shown that atoms having low ionization potentials (Cs, K, Na) intercalate a two-dimensional graphite film on iridium at T=300–400K with an efficiency χ≈0.5, accumulating beneath the film to a concentration of up to a monolayer. Atoms having high ionization potentials (Si, Pt, Ni, C, Mo, etc.) intercalate a two-dimensional graphite film on iridium at T≈1000K with an efficiency, χ≈1, forming beneath the film a thick intercalate layer which is strongly bonded chemically to the metal substrate but is probably weakly bonded to the graphite monolayer by van der Waals forces. The presence of a graphite “lid” impeding the escape of atoms from the intercalated state up to record high temperatures T∼2000K leads to superefficient diffusion (with an efficiency close to one) of various atoms (Cs, K) into the bulk of the substrate (Re, Ir). Zh. Tekh. Fiz. 69, 72–75 (September 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号