首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the identification of efficient combinations of catalyst, carbon feedstock, and temperature for the ethanol chemical vapour deposition (CVD) growth of single-wall carbon nanotubes (SWCNTs) onto silicon substrates.Different catalyst preparations, based on organometallic salts (Co, Fe, Mo, Ni acetate, and bimetallic mixtures), have been spin coated onto thermally grown silicon dioxide on silicon chips to perform tests in a temperature range between 500 and 900 °C.The samples have been then characterized by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. Assuming the growth of high-quality isolated nanotubes as target, the ratio in Raman spectra between the intensity of the G peak and of the D peak has been used as the main parameter to evaluate the performance of the catalytic process. A comparison made for both single metals and bimetallic mixtures points out best conditions to achieve efficient CVD growth of SWCNTs.  相似文献   

2.
A series of nine catalysts containing Ce/Fe and Mo/Fe at various loadings on MgO supports have been studied as catalysts for chemical vapour deposition (CVD) of single-walled carbon nanotubes (SWCNTs) using a methane carbon source. Our results show that the Ce/Fe system is very suitable as a catalyst that favours SWCNT growth, and we question the special importance that has been attributed to Mo as an additive to Fe-based catalysts for SWCNT growth, as it appears that Ce is equally effective. Our results indicate that dehydroaromatization (DHA) is not a defining step for the growth mechanism, as has been suggested for Mo/Fe systems previously, and show that Ce and Mo do not seriously perturb the well-known Fe/MgO system for growth of high quality SWCNT. Using Raman spectroscopy, we have shown that the Ce/Fe/MgO catalyst system favours growth of SWCNTs with a different distribution of chiralities compared to the analogous Mo/Fe/MgO system.  相似文献   

3.
In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.  相似文献   

4.
Single-walled carbon nanotubes (SWCNTs) are shown to grow rapidly on iron oxide catalysts on the fuel side of an inverse ethylene diffusion flame. The pathway of carbon in the flame is controlled by the flame structure, leading to formation of SWCNTs free of polycyclic aromatic hydrocarbons (PAH) or soot. By using a combination of oxygen-enrichment and fuel dilution, fuel oxidation is favored over pyrolysis, PAH growth, and subsequent soot formation. The inverse configuration of the flame prevents burnout of the SWCNTs while providing a long carbon-rich region for nanotube formation. Furthermore, flame structure is used to control oxidation of the catalyst particles. Iron sub-oxide catalysts are highly active toward SWCNT formation while Fe and Fe2O3 catalysts are less active. This can be understood by considering the effects of particle oxidation on the dissociative adsorption of gas-phase hydrocarbons. The optimum catalyst particle composition and flame conditions were determined in near real-time using a scanning mobility particle sizer (SMPS) to measure the catalyst and SWCNT size distributions. In addition, SMPS results were combined with flame velocity measurement to measure SWCNT growth rates. SWCNTs were found to grow at rates of over 100 μm/s.  相似文献   

5.
Ni2Y and Nd–Fe–Nb–B catalysts were used for the processing of nanoparticles by arc discharge between graphite electrodes. The products were collected from the cathode (deposit and collar) and reactor walls (soot). The ferromagnetic nanoparticles have size in the range of 10–50 nm and are encapsulated in carbon shells. The chemical composition, structure and magnetic properties of the nanoparticles have been studied. For the Ni2Y catalyst we found that the arc discharge results in decomposition of the intermetallic Ni2Y phase and formation of Ni nanoparticles encapsulated in carbon shells in the collar and soot, whereas yttrium oxide was found in the deposit. For the Nd–Fe–Nb–B catalysts the magnetic properties depend on the collection place and erosion rate. Fe and Fe–Nd–Nb nanoparticles were found in the soot and deposit, respectively.  相似文献   

6.
Adsorption properties of metformin (MF) drug onto pristine, Si- and Al-doped (5, 5) armchair single-wall carbon nanotubes (SWCNTs) were studied using density functional theory (DFT) calculations at the B3LYP and ωB97XD methods with the standard 6–311 G** basis set. The most stable geometries of the MF drug molecule onto pristine, Si- and Al-doped (5, 5) CNTs were selected and evaluated in the gaseous and aqueous environments. We calculated the natural bond orbitals (NBO), Frontier molecular orbital (FMO), density of states (DOS) and molecular electrostatic potential (MEP) of systems upon adsorption of MF drug. It was found that the reaction of MF drug with pure SWCNT is physisorption in nature, while high chemisorption can be achieved by using Al- and Si-doped SWCNTs. Despite Al-doped SWCNT provides stronger adsorption, however the change in the energy gap of Si-doped SWCNT is more pronounced. It is predicted that MF drug incorporating Si-doped SWCNT can be extended as drug delivery system.  相似文献   

7.
We demonstrate that the quality of the as-grown single-walled carbon nanotubes (SWCNTs) can be effectively improved by the addition of the B ingredient in the Fe/MgO catalyst. The as-grown SWCNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The SWCNTs prepared by the pure Fe/MgO catalyst have relatively low graphite crystallinity and are coated by much amorphous carbon. The intensity ratio of the D- and G-bands (ID/IG) in Raman spectra is relatively high (0.098 for laser 532 nm and 0.075 for laser 785 nm). The SWCNTs grown from the Fe/MgO catalyst doped with 0.1 part of B have more regular graphite structure with little amorphous carbon. The ID/IG values reduced remarkably (0.041 for laser 532 nm and 0.040 for laser 785 nm). The effect would be attributed to the inhibitory action of the doped B on the formation of radical hydrocarbon species for the formation of SWCNTs.  相似文献   

8.
A series of W–Co–MgO catalysts were prepared for the first time by decomposing a mixture of magnesium nitrate, ammonium paratungstate, citric acid, and cobalt nitrate. Single-walled carbon nanotubes (SWCNTs) were synthesized over these W–Co–MgO catalysts and the effects of the quantity of metal in the catalysts on the synthesis of SWCNTs were investigated by Raman spectroscopy and transmission electron microscopy (TEM). The results show that, among W–Co–MgO catalysts, the W1–Co5 catalyst was found to be most effective for synthesizing SWCNTs. The diameter distribution of as-grown SWCNTs prepared over the W1–Co5 catalyst was estimated to range from 0.72–1.64 nm. When the molar ratios of W:MgO and Co:MgO in the catalysts are more than 2:100 and 5:100, respectively, the amorphous carbon content or defect concentration of SWCNTs may be increased with the increase of the quantity of metal in the catalysts. The dependence of the diameter distribution of SWCNTs on the quantity of W in the catalysts is small. However, the proportion of SWCNTs with larger diameter is increased as the quantity of Co in the catalysts is increased owing to the increase in the number of larger active sites.  相似文献   

9.
A single-wall carbon nanotube (SWCNT) can be visualized as a graphene rolled into a cylinder. Tight-binding band structure calculations, with hopping between nearest-neighbor π orbitals only (NNTB), established rules by which both the mode in which the graphene is rolled up and the diameter determine whether the SWCNT is a metal or a semiconductor. However, when the diameter of the SWCNT is ultra-small its large curvature results in the breakage of these rules. In this work, we studied zigzag (n, 0) SWCNTs with diameters smaller than 0.7 nm using a π orbital-only tight-binding model including anisotropy in the hopping between next-nearest-neighbor sites (ANNNTB). Band overlaps were found in the electronic band structures of the zigzag SWCNTs for n=3, 4, 5, and 6, indicating that they are metals. The reason why the band structures of armchair and chiral SWCNTs are less affected by curvature effects becomes clear with the ANNNTB model, as does the reason why non-degenerate states cause band overlaps of the zigzag SWCNTs for n=3, 4, 5, and 6. Our results show that a π orbital-only tight-binding model is able to describe both the band overlaps and gaps obtained by ab initio calculations for zigzag SWCNTs.  相似文献   

10.
Here, we report the molecular dynamics simulation on liquid dimethyl sulphoxide (DMSO) confined by single-walled carbon nanotubes (SWCNTs) in comparison with DMSO in the bulk phase at 298 K. The local order of DMSO, analysed in terms of radial distribution functions is similar to that in the bulk except the case with the SWCNT (8, 8) where the anomalous structure pattern is realized. Meanwhile, the translational self-diffusion coefficients of DMSO in confinements are much lower then in the bulk phase (by a factor of 2–3) and correlate with a value of the SWCNT internal diameter. Using cylindrical distribution functions of DMSO atoms we elucidate that the slowdown of self-diffusion coefficient of DMSO confined in the SWCNTs is reduced by the first layer of DMSO molecules close to the SWCNT wall.  相似文献   

11.
Field-ion microscopy(FIM),a tool for surface analysis with atomic resolution,has been employed to observe the end structure of single-walled carbon nanotubes(SWCNTs).FIM images revealed the existence of open SWCNT ends,Amorphous carbon atoms were also observed to occur around SWCNTs and traditional field evaporation failed to remove them.Heat treatment was found to be efficacious in altering the end structures of SWCNT bundles.Carbon and oxygen atoms released from heated tungsten filament are believed to be responsible for the decoration imposed on the SWCNT ends.  相似文献   

12.
Single-walled carbon nanotubes (SWCNTs) are synthesized by the ablation of a catalyst-containing carbon target with a cw CO2 laser. Emphasis is on ablation conditions that are favorable to self-organized SWCNT synthesis. It is shown that the graphite target intensely evaporates with the formation of fractal-like tubes at the edge of the jet when the laser power density exceeds 105 W/cm2. Still more favorable conditions for carbon nanotube synthesis are set if the power density lies within 2×104–5×104 W/cm2. Under these conditions, both individual SWCNTs and their bundles of diameter from 1.1 to 1.5 nm are produced, as shown by Raman scattering and electron microscopy studies. In this series of experiments, the maximal fraction of SWCNTs reaches 20%. A mechanism of SWCNT fast growth in the laser torch is suggested.  相似文献   

13.
Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confirmed the existence of an SWCNT bundle on the W tip. Under appropriate experimental conditions,a series of FEM patterns with atomic resolution were obtained. These patterns arose possibly from the field emission of the open end of an individual (16,0) SWCNT protruding from the SWCNT bundle. The magnification factor and the resolution under our experimental conditions were calculated theoretically. If the value of the compression factor β was set at β= 1.76, the calculated value of the magnification factor was in agreement with the measured value. The resolving powerof FEM was determined by the resolution equation given by Gomer. The resolutionof 0.277 nm could be achieved under the typical electric field of 5.0×107 V/cm, which was close to the interatomic separation 0.246 nm between carbon atoms along the zigzag edge at the open end for the (16, 0) SWCNT. Consequently, our experimental results were further supported by our theoretical calculation.  相似文献   

14.
This study presents the approach to the purification and subsequent metallic/semiconductive (M/S) fractionation of single-walled carbon nanotubes (SWCNTs) with diameter from 1.04 to 1.60 nm produced via laser ablation. SWCNTs were purified through 3-fold refluxing processes in nitric acid followed by the multiple washings with sodium hydroxide and hydrochloric acid. The purified-annealed SWCNTs sample was divided into seven batches. One batch was dispersed in acetone as a reference sample. Each of the remaining batches were dispersed in one of the following surface agents: sodium dodecyl sulfate, sodium cholate acid (SCA), sodium deoxycholate, cetrimonium bromide, cetylpyridinium chloride, and benzalkonium chloride (BKC). SWCNT suspensions were fractionated via free solution electrophoresis technique. The recovered fractions from electrode and control areas were analyzed via optical absorption spectroscopy in UV–Vis–NIR range to evaluate the efficiency of the separation process. Raman spectroscopy was applied to analyze the purity of the samples. The catalyst content was estimated by atomic absorption spectroscopy. The morphology of the investigated samples was observed via high-resolution transmission electron microscopy. This contribution clearly shows that among the investigated surfactants there are two promising candidates (SCA and BKC) which can efficiently enrich the bulk sample in one electronic type of carbon nanotubes when FSE is applied.  相似文献   

15.
The synthesis of single-walled carbon nanotubes (SWCNTs) on a transparent substrate with multiple-catalyst layer (Fe/Al/Cr: 0.5/15/500 nm) using laser-induced chemical vapor deposition is reported. Ethylene (C2H4) mixed with hydrogen (H2) and a continuous wave Nd:YVO4 laser (532 nm) were used as the precursor gas and the irradiation source, respectively. It was found that the density and quality of the SWCNT dots varied sensitively to laser irradiance and chamber pressure. From subsequent micro-Raman analyses at different excitation sources (488, 514, 633, and 785 nm), the diameters of the SWCNTs were estimated to be within the range of 0.8-2 nm and that the SWCNT dots were composed of both semiconducting and metallic SWCNTs. It is demonstrated that an array of SWCNT dots can be fabricated at precisely controlled positions of a transparent substrate at room temperature with no need of catalysis patterning.  相似文献   

16.
Fe K-edge X-ray absorption fine structure (XAFS) measurements were performed in order to elucidate the formation mechanism of single-walled carbon nanotubes (SWCNTs) grown on natural magnesite by pyrolyzing methane gas. It was clearly shown by XAFS analyses that iron metal fine particles, which were reduced from iron oxides by methane gas, worked as a catalyst for SWCNT growth. Structural characteristics of the initial iron state in the natural magnesite were also discussed.  相似文献   

17.
Single-walled carbon nanotubes (SWCNTs) were synthesized using the high-pressure carbon monoxide disproportionation process. The SWCNT diameter, diameter distribution and yield can be varied depending on the process parameters. Important parameters are the temperature, the pressure, the CO gas flow rate and the nozzle injection velocity and geometry for the injection of reactant gas into the reaction zone. Carbon nanotubes as small as 1.0 nm in diameter have been produced. The purity and yield of the deposited material were increased with increasing CO gas flow by means of rapid heating of the gas mixture and using an optimum injection profile. Highly pure SWCNTs were produced at 1250 K, pressures between 5 and 10 bar and gas in the turbulent flow regime in the cold line of 2000–2500 sccm CO. The raw materials were purified by oxidation in high vacuum at 523 K in wet Ar/20 vol. % O2 to remove SWCNT carbon-like impurities and to oxidize the iron catalyst nanoparticles. The iron oxides were removed by chemical treatment in concentrated HCl/C2H5OH mixture solution. The SWCNTs were analyzed by scanning electron microscopy, high-resolution transmission electron microscopy, atomic absorption spectroscopy and optical absorption spectroscopy to determine the purity, the diameter and diameter distribution, the chemical composition and the catalyst morphology, as well as the optical properties of deposited SWCNTs in dependence on the synthesis parameters. PACS 29.30.-h  相似文献   

18.
We demonstrate a LD end-pumped passively mode-locked Nd:YVO4 laser using a single-walled carbon nanotubes saturable absorber (SWCNT-SA). The SWCNT wafer was fabricated by electric arc discharge method on quartz substrate with absorption wavelength of 1064 nm. At the absorbed pump of 15.8 W, an output power of 750 mW CW (continuous wave) mode-locked laser pulse was achieved with the repetition of 79.7 MHz, corresponding to optical-optical efficiency of 4.75%.  相似文献   

19.
The method using arc discharge in liquid is a simple and inexpensive route for synthesis of carbon nanotubes and other related nano-materials. In this study, we report the synthesis of single-wall carbon nanotubes (SWCNTs) by means of the arc-in-water method under extremely low gravity conditions. The strong heat convection caused by the arc plasma is suppressed under such conditions. Therefore, the boiling flow behavior and temperature distribution have been stabilized in low gravity. As a result, the possibility of the chirality control of SWCNTs by applying extremely low gravity was revealed; namely, the yield of semiconducting SWCNTs was increased and several SWCNTs of specific diameters turned out to be prominent under extremely low gravity conditions. PACS 52.80.Wq; 68.37.Lp; 81.07.De; 81.70.Ha; 82.80.Gk  相似文献   

20.
Airborne single-wall carbon nanotubes (SWCNTs) have a high tendency to agglomerate due to strong interparticle attractive forces. The SWCNT agglomerates generally have complex morphologies with an intricate network of bundles of nanotubes and nanoropes, which limits their usefulness in many applications. It is thus desirable to produce SWCNT aerosol particles that have well-defined, unagglomerated fibrous morphologies. We present a method to generate unagglomerated, fibrous particles of SWCNT aerosols using capillary electrospray of aqueous suspensions. The effects of the operating parameters of capillary electrospray such as strength of buffer solution, capillary diameter, flow rate, and colloidal particle concentration on the size distributions of SWCNT aerosols were investigated. Results showed that electrospray from a suspension of higher nanotube concentration produced a bimodal distribution of SWCNT aerosols. Monodisperse SWCNT aerosols below 100 nm were mostly non-agglomerated single fibers, while polydisperse aerosols larger than 100 nm had two distinct morphologies: a ribbon shape and the long, straight fiber. Possible mechanisms are suggested to explain the formation of the different shapes, which could be used to produce SWCNT aerosols with different morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号