首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures were prepared and tested. The sodium alginate membrane was water soluble and mechanically weak but it showed promising performance for the pervaporation dehydration. To control the water solubility the sodium alginate membrane was crosslinked ionically using various divalent and trivalent ions. Among them the alginate membrane crosslinked with Ca2+ ion showed the highest pervaporation performance in terms of the flux and separation factors.  相似文献   

2.
Different viscosity grade sodium alginate (NaAlg) membranes and modified sodium alginate membranes prepared by solution casting method and crosslinked with glutaraldehyde in methanol:water (75:25) mixture were used in pervaporation (PV) separation of water+acetic acid (HAc) and water+isopropanol mixtures at 30 °C for feed mixtures containing 10–50 mass% of water. Equilibrium swelling experiments were performed at 30 °C in order to study the stability of membrane in the fluid environment. Membranes prepared from low viscosity grade sodium alginate showed the highest separation selectivity of 15.7 for 10 mass% of water in the feed mixture, whereas membranes prepared with high viscosity grade sodium alginate exhibited a selectivity of 14.4 with a slightly higher flux than that observed for the low viscosity grade sodium alginate membrane. In an effort to increase the PV performance, low viscosity grade sodium alginate was modified by adding 10 mass% of polyethylene glycol (PEG) with varying amounts of poly(vinyl alcohol) (PVA) from 5 to 20 mass%. The modified membranes containing 10 mass% PEG and 5 mass% PVA showed an increase in selectivity up to 40.3 with almost no change in flux. By increasing the amount of PVA from 10 to 20 mass% and keeping 10 mass% of PEG, separation selectivity decreased systematically, but flux increased with increasing PVA content. The modified sodium alginate membrane with 5% PVA was further studied for the PV separation of water+isopropanol mixture for which highest selectivity of 3591 was observed. Temperature effect on pervaporation separation was studied for all the membranes; with increasing temperature, flux increased while selectivity decreased. Calculated Arrhenius parameters for permeation and diffusion processes varied depending upon the nature of the membrane.  相似文献   

3.
Novel two-ply dense composite membranes were prepared using successive castings of sodium alginate and chitosan solutions for the pervaporation dehydration of isopropanol and ethanol. Preparation and operating parameters namely polymer types facing to the feed stream, NaOH treatment for the regeneration of chitosan, and crosslinking system types were investigated using the factorial design method. It was shown that these parameters were all critical to the performance of the membrane in the form of the main and interaction effects. The pervaporation performance of the two-ply membrane with its sodium alginate layer facing the feed side and crosslinked or insolubilized in sulfuric acid solution was compared with the pure sodium alginate and the chitosan membranes in terms of the flux and separation factors. It was shown that although its flux was lower than that of the pure sodium alginate and chitosan membranes, the separation factors at various alcohol concentrations were in between values for the two pure membranes. For the dehydration of 90 wt% isopropanol–water mixtures the performance of the two-ply membrane which was moderately crosslinked in formaldehyde was found to match the high performance of the pure sodium alginate membrane. This two-ply membrane had fluxes of 70 g/m2 h at 95% EtOH, 554 g/m2 h at 90% PrOH and separation factors of 1110 at 95% EtOH, 2010 at 90% PrOH and its mechanical properties were better than that of the pure sodium alginate membrane.  相似文献   

4.
For the vapor permeation of ethanol-water mixtures, two types of dense sodium alginate (SA) membranes have been prepared: a nascent SA membrane and crosslinked SA membranes with glutaraldehyde (GA). In the vapor permeation of the concentrated ethanol-water mixtures through the SA membranes, the effects of feed temperature, cell temperature and crosslinking density in the membrane were investigated on the membrane performance, and a comparison of vapor permeation process was made with pervaporation. SA membranes having different crosslinking gradients have been fabricated by exposing the nascent membrane to different GA content of reaction solutions. The extent of the gradient was controlled by the exposing time. The permeation performance of the membranes will be discussed with the extent of the gradient. An optimal crosslinking gradient was determined in terms of flux and membrane stability. The separation of ethanol-water mixtures through the membrane with the optimal crosslinking gradient was carried out by vapor permeation and the permeation performance will be discussed, and compared with pervaporation.  相似文献   

5.
渗透汽化优先透醇分离膜   总被引:1,自引:0,他引:1  
展侠  李继定  黄军其  陈翠仙 《化学进展》2008,20(9):1416-1426
20世纪70年代的能源危机促使了人们对可再生能源-发酵法制备乙醇与节能分离工艺的探求。渗透汽化膜分离技术作为一种新兴的膜分离技术,具有分离效率高、低能耗、易于和发酵装置耦合、易于与其它分离方法联用等显著优点,特别适用于乙醇/水等恒沸混合物体系的分离。本文简要介绍了渗透汽化优先透醇膜的研究背景,总结并分析了用于指导膜材料选择的理论,详细介绍了用于制备优先透醇膜的含硅聚合物、含氟聚合物、有机/无机复合膜材料以及其他聚合物等膜材料的的结构特点、改性方法及膜材料分子结构与渗透汽化性能间的关系,并对不同膜材料对乙醇/水的渗透汽化分离性能进行了总结比较,在此基础上总结了目前渗透汽化乙醇/水分离膜存在的问题,并对其未来的研究方向和发展前景进行了展望。  相似文献   

6.
Pervaporation (PV) separation of water–acetonitrile mixture using sodium alginate (NaAlg) based mixed matrix membranes (MMM) comprising different amounts of nano NaA zeolite (10, 20 and 30 wt%) is investigated in various concentrations of water and temperatures. The prepared membranes are modified by sulfosuccinic acid (SSA) as a crosslinking agent. NaAlg-NaA/SSA membranes are synthesized by a solution casting technique. The process and membrane performance including separation factor, flux and activation energy of permeation are determined. Results reveal that adding of nano zeolite may lead to an increase in the flux and the separation factor of sodium alginate membrane up to 123 and 169%. In addition, using MMM in dehydration of a feed containing 30 wt% of water shows much better performance than alginate membrane. Furthermore, the activation energy of water permeation through MMM is predicted lower than sodium alginate membrane which reflects the facilitated permeation of water through MMM.  相似文献   

7.
具有界面交联结构藻酸钠复合膜的制备与性能   总被引:1,自引:1,他引:0  
报道了一种具有界面交联结构的新型藻酸钠复合膜及其对醇水和其它有机物水体系的渗透汽化分离性能.该膜的活性层为藻酸钠,支撑层为氨化聚丙烯腈(PAN)多孔膜,在这两层之间存在着界面交联结构.研究了PAN多孔膜的水解时间、进行氨基化的二元胺种类及浓度对复合膜分离性能的影响,用己二胺进行氨基化所得到的复合膜的分离性能明显优于用乙二胺的结果.扫描电镜照片显示水解及氨基化改变了PAN超滤膜的孔结构,这也是影响新型复合膜性能的一个重要原因.  相似文献   

8.
Pervaporative performances were investigated for dehydration of water–acetonitrile using nanocomposite metal oxide and Pervap® 2202 membranes. Poly (vinyl alcohol) based nanocomposite metal oxide membranes were prepared through co-precipitation of different amounts of Fe (II) and Fe (III). The freestanding nanocomposite metal oxide membranes were characterized by Transmission electron microscopy and X-ray diffraction. Sorption studies evaluated the extent of interaction and degree of swelling of the membranes. Fe containing PVA polymer matrix showed improved flux and selectivity. In order to observe simultaneous effect of flux and selectivity, pervaporation separation index showed 10 wt.% iron oxide containing membrane is the most amongst all tested. The diffusion coefficients were calculated using pervaporation results and sorption kinetics data. An attempt was made to predict sorption selectivity thermodynamically. PV separation factor was observed to be governed by sorption and/or diffusion phenomena and sorption selectivity was found to be higher than PV separation factor. Prediction of concentration profile in the membrane was also attempted and the results showed that water concentration in the membrane drops down with increase in membrane thickness.  相似文献   

9.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

10.
A novel organic dehydration membrane consisting of aminated polyacrylontrile (PAN) microporous membrane as sublayer, alginate coating as top layer has been prepared and characterized by pervaporation experiment. The influence of hydrolysis and amination of the microporous support layer on selectivity and flux was studied and it was shown that amination of the sublayer improved pervaporation performance of the composite membrane greatly. The counter cation of alginate coatings as dense separating layer also influenced separation properties of the membrane, which was better for K+ than for Na+. This novel composite membrane with K+ as counter ion has a high separation factor of 1116 and a good permeation rate of 350 g/m2 h for pervaporation of 90 wt.% ethanol aqueous solution at 70°C, higher separation factors and fluxes for n-PrOH/water, i-PrOH/water, acetone/water and dioxane/water systems. The results show that the separation factor and flux of this membrane increase with raising the operating temperature. At the same time, SEM micrographs show that the hydrolysis and amination of PAN microporous membrane change its pore structure. From the results it can be concluded that pore structure of the sublayer in addition to its chemical structure also make influence of separation properties of the composite membrane.  相似文献   

11.
Five N-alkylated derivatives of a poly(amidesulfonamide) polymerized from N,N′-bis-4-aminophenylsulfonyl 1,3-diaminopropane and isophthaloyl chloride were synthesized. The new polymeric materials were used to prepare nonporous symmetric membranes. The membranes were characterized by IR spectroscopy, sorption measurements and wide-angle X-ray diffraction. During the pervaporation of 10% aqueous solutions of methanol, ethanol, propan-1-ol and propan-2-ol, membranes made from the parent and modified poly(amidesulfonamide)s were preferentially permeable to water and their separation factors were mainly dependent on the molecular weight of the permeant. By introducing an alkyl pending group to the backbone of the polymer, all modified membranes exhibited an enhancement in flux rate and a variation in separation factor in the pervaporation of aqueous alcohols. In the dehydration of ethanol, several modified membranes possessed separation characteristics that appeared to be superior to that of the parent membrane.  相似文献   

12.
Three different types of blend membranes based on chitosan and polyacrylic acid were prepared from homogeneous polymer solution and their performance on the pervaporation separation of water-ethanol mixtures was investigated. It was found that all membranes are highly water-selective. The temperature dependence of membrane permselectivity for the feed solutions of higher water content (>30 wt%) was unusual in that both permeability and separation factor increased with increase in temperature. This phenomenon might be explained from the aspect of activation energy and suggested that the sorption contribution to activation energy of permeation should not always be ignored when strong interaction occurs in the pervaporation membrane system.A comparison of pervaporation performance between composite and homogeneous membranes was also studied. Typical pervaporation results at 30°C for a 95 wt% ethanol aqueous solution were: for the homogeneous membrane, permeation flux = 33 g/m2 h, separation factor = 2216; and for the composite membrane, permeation flux = 132 g/m2 h, separation factor = 1008. A transport model consisting of dense layer and porous substrate in series was developed to describe the effect of porous substrate on pervaporation performance.  相似文献   

13.
采用二次生长法在廉价的多孔莫来石管状支撑体上合成了含硼MFI(B-MFI)分子筛膜。通过XRD、FTIR、ICP-AES、11BMAS NMR和SEM对形成膜和粉末进行表征,并考察了溶胶nB/nSiO2比、料液温度和浓度对分子筛膜渗透汽化性能的影响。表征结果证实BO4存在于MFI晶体骨架中。溶胶nB/nSiO2比对膜层微结构和渗透汽化性能有较大影响。B-MFI型分子筛膜选择性地从水溶液中透过有机物,在60℃、质量分数5%丙酮/水和乙醇/水体系的分离因子分别为260和70,均高于同等条件下制备的silicalite-1分子筛膜。  相似文献   

14.
Calcium alginate-chitosan (CA/CS) blended membranes were prepared and crosslinked with maleic anhydride (MA) for the pervaporation (PV) separation of ethylene glycol (EG)/water mixtures at 30°C. The structure and properties of blend membranes were studied with the aid of FTIR, XRD, TGA, and SEM. The effect of experimental parameters such as feed composition, membrane thickness, and permeate pressure on separation performance of the MA crosslinked membranes were determined in terms of flux, selectivity, and pervaporation separation index. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes in pure, as well as in binary mixtures. The experimental results suggested that the crosslinked membrane (M-CA/CS) exhibited a good selectivity of 302 at a normalized flux of 0.38 kg.m? 2.h? 1.10 μ m at 30°C for 96.88 wt% EG aqueous solution.  相似文献   

15.
In order to study, how the membrane hydrophilicity influences the pervaporation (PV) separation properties in dehydration of alcohols, two polyelectrolyte complex (PELC) membranes, based on interfacial reaction of polyanionic sodium salt of sulfoethyl cellulose (SEC) with polycationic poly[dimethyl(diallyl)ammonium chloride] (pDMDAAC), or cationic surfactant benzyl(dodecyl)dimethylammonium chloride (BDDDMAC), were prepared and tested. Contact angle measurements on membrane surfaces made in various media showed that the membrane hydrophilicity, in the sense of water wettability, had not influence neither to flux nor selectivity in the PV dehydration process. On the contrary, the membrane wettability determined by contact angle measurements in the real water/alcohol separation mixture, correlated very well with the PV experiments. These findings are confronted with the solution-diffusion PV model.  相似文献   

16.
A novel alcohol dehydration membrane with a three layer structure has been prepared. The top layer is a thin dense film of chitosan (CS), and the support layer is made of microporous polyacrylonitrile (PAN). Between the dense and microporous layer, there is an intermolecular cross-linking layer. This novel composite membrane has a high separation factor of more than 8000 and a good permeation rate of 0.26 kg/m2 h for the pervaporation of 90 wt% ethanol aqueous solution at 60°C, 0.8 kg/m2 h flux for a n-PrOH/water system and around 1 kg/m2 h flux for an i-PrOH/water system using 80 wt% alcohol concentration at 60°C. The separation factor for both cases is more than 105. The separation performance varies with feed composition, operating temperature and conditions of membrane preparation. The results show that the separation factor and flux of this membrane increase with raising the operating temperature. At the same time, the crosslinking layer improves durability of the composite membrane, and the pervaporation performance can be adjusted by changing the structure of the cross-linking layer. The cross section of the composite membrane has been examined by SEM.  相似文献   

17.
壳聚糖/褐藻酸钠聚离子复合膜的渗透汽化分离性能研究   总被引:13,自引:0,他引:13  
以红外光谱和扫描电镜表征壳聚糖/褐藻酸钠聚离子复合膜的结构与表面形态。研究了该膜组成、料液浓度、温度等对乙醇-水溶液的渗透汽化分离性能的影响。实验结果表明,壳聚糖/褐藻酸钠聚离子复合膜不仅对乙醇-水溶液,而且对许多水溶性有机溶剂与水的溶液都具有很高的渗透汽化脱水的选择分离性能。  相似文献   

18.
通过二次生长法在α-Al2O3支撑体表面合成了PHI分子筛膜,考察了晶种合成方式、二次生长合成温度及时间对形成PHI分子筛膜的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)对合成膜进行表征.结果表明:载体表面合成出了PHI分子筛;二次生长法合成出的PHI分子筛膜连续、致密,膜厚约为20 μm.利用渗透汽化技术对甲醇、乙醇、异丙醇和叔丁醇等不同分子尺寸的醇/水体系进行分离性能的研究,同时考察原料液中水含量对所制备的PHI分子筛膜的分离性能的影响.结果表明:PHI分子筛膜对几种醇水体系都具有良好的分离效果,随着水含量的增加,水的渗透通量呈增大趋势,乙醇和甲醇的理想分离因子有所降低,异丙醇和叔丁醇的理想分离因子增大.  相似文献   

19.
Four types of polyhedral oligosilsesquioxane (POSS)–octaanion, octaammonium, octanitrophenyl, and octaaminophenyl–were incorporated into chitosan (CS) to fabricate inorganic–organic hybrid membranes. The hybrid membranes were employed for the pervaporation dehydration of ethanol aqueous solutions. The performance of the hybrid membranes was found to be influenced by the type and loading amount of POSS. In comparison with the neat CS membranes which showed a separation factor of 65.2 for 10 wt % water in the feed at 303 K, the hybrid membranes containing 5 wt % of octaanion and octaaminophenyl POSS showed high separation factors of 305.6 and 373.3, respectively. The effects of the operating conditions such as the feed composition and temperature on the pervaporation performance of the membranes were investigated. Activation energies for permeation in the membranes were estimated from Arrhenius relationship. The activation energies for ethanol permeation in the hybrid membranes were much higher than that in the CS membrane, which may account for the large enhancements in the selectivity of the hybrid membranes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

20.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号