首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a high-power 1.53 μm laser based on intracavity KTA-OPO driven by diode-end-pumped acousto-optical Q-switched YVO4/Nd:YVO4 composite. The composite crystal was utilized for reducing the thermal effect, and the mode mismatch compensating OPO cavity was designed for efficient OPO conversion. The output power of eye-safe laser at 1535 nm was up to 4.4 W with the pump power of 27 W, corresponding to a diode-to-signal conversion efficiency of 16.3%. To our knowledge, this is the highest output power in diode-end-pumped circumstances. In the experiment, the strong yellow light generated by Raman conversion and frequency doubling in the KTA crystal was observed.  相似文献   

2.
X. Yu  R. P. Yan  M. Luo  F. Chen  X. D. Li  J. H. Yu 《Laser Physics》2009,19(10):1960-1963
We demonstrated a diode-end-pumped continuous-wave 914 nm laser using a novel grown-together YVO4/Nd:YVO4 crystal for the first time. A maximum output power at 914 nm of 7.5 W with an optical-optical efficiency of 16.3% and a slope efficiency of 24.3% was obtained when the incident pump power was 46.2 W. The beam quality factor M 2 was 3.2 at the output power of 6.0 W. The quality and specification of the grown-together composite YVO4/Nd:YVO4 crystal should be improved. Meanwhile, energy-transfer upconversion spectrum of the composite YVO4/Nd:YVO4 crystal laser was also investigated.  相似文献   

3.
Z. Zhao  Y. Dong  C. Liu  M. Hu  Z. Xiang  J. Ge  J. Chen 《Laser Physics》2009,19(11):2069-2072
A effective continuous-wave (CW), high power laser generated using a YVO4/Nd:YVO4 composite crystal is presented. 18.8 W output power in multi-mode has been achieved with a maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 60.26%. In TEM00 mode operation, 15.1 W output power also has been achieved with the maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 47.69%. With a 200 mm focal-length positive lens and using the moving knife-edge method, the beam quality factor is measured to be M2 = 1.2 for TEM00 mode beam.  相似文献   

4.
We present a simple and compact continuous-wave (CW) 1176 nm laser based on self-frequency Raman conversion in continuous-grown YVO4/Nd:YVO4 composite crystal. With a composite crystal 30 mm in length, a maximum output power up to 1.84 W was achieved at the incident diode pump power of 23.6 W. Corresponding to overall optical conversion, the efficiency was 7.8% and the slope efficiency was 8.5%. The conversion efficiency has been doubled compared with the conventional Nd:YVO4 CW self-frequency Raman laser. The excellent performance of this laser shows that the long continuous-grown YVO4/Nd:YVO4 composite crystal is promising in the application of CW Raman lasers and ideal for miniaturization.  相似文献   

5.
With an undoped YVO4 crystal as a Raman shifter, we substantially improved the reliability and the output performance of an actively Q-switched 1176-nm Nd:YVO4 Raman laser. With an incident pump power of 18.7 W, the average power is greater than 2.6 W at 80 kHz. The pulse width of the pulse envelope is shorter then 5 ns with mode-locked modulation. With an incident pump power of 12.7 W, the pulse energy and peak power is higher than 43 μJ and 14 kW at 40 kHz. PACS 42.55.Ye; 42.55.Xi; 42.60.Gd  相似文献   

6.
J. An  Sh. Zhao  G. Li  K. Yang  D. Li  J. Wang  M. Li 《Laser Physics》2008,18(11):1312-1315
By using a piece of codoped Nd3+:Cr4+:YAG crystal as a saturable absorber, a laser-diode pumped passively Q-switched Nd:YVO4/YVO4 laser has been realized. The maximum laser output power of 2.452 W has been obtained at the incident pump power of 8.9 W for an 8.8% transmission of the output coupler at 1064 nm, corresponding to a slope efficiency of 30%. The other output laser characteristics of the laser have also been investigated. The laser with a Nd3+:Cr4+:YAG saturable absorber has a lower threshold pump power and a higher slope efficiency compared to that with a similar small-signal transmission of a Cr4+:YAG saturable absorber.  相似文献   

7.
J. H. Liu 《Laser Physics》2012,22(10):1463-1465
We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.  相似文献   

8.
We report a continuous-wave intracavity Raman laser at 1179.5 nm with a SrWO4 Raman crystal in a diode-end-pumped Nd:YVO4 laser. The highest output power of 2.23 W is obtained at the laser diode power of 21.2 W corresponding to the slope efficiency of 17.3% and a diode-to-stokes optical conversion efficiency of 10.5%. The dependence of the Raman laser performance on the pump polarization is also studied. The measured Raman thresholds are about 9.3 and 8.3 W in the diode pump laser power for the a- and b-polarized configurations, respectively. The Raman gain coefficients of the c-cut SrWO4 crystal for a- and b-polarized pumps are estimated to be about 4.9 and 4.7 cm/GW, respectively.  相似文献   

9.
A high polarization Nd:YVO4/KTP laser with dual crossed gain crystal is reported. Using two optical axis orthogonal Nd:YVO4 crystal as gain medium, eliminating the depolarization effect of single Nd:YVO4 crystal, the high polarization green laser is obtained. With 1.8 W diode laser pump power the output power of TEM00 green laser is 366 mW, the light–light conversion efficiency is up to 20.3%, and the polarization ratio is 110:1. This laser has the advantages of being simple and easily attainable at a low cost, and it is suitable for batch production.  相似文献   

10.
We report on a continuous-wave Nd:YVO4 oscillator at 1342 nm based on the combination of a grown-together composite crystal YVO4/Nd:YVO4/YVO4 and the 888 nm diode-laser direct pumping for the first time. At the absorbed pump power of 102 W, a maximum average output power of 37.2 W at 1342 nm was obtained, corresponding to an optical-optical conversion efficiency of 36.5% and a high slope efficiency of 63.0%, respectively. To the best of our knowledge, this is the highest output power ever obtained for a 1342 nm Nd:YVO4 oscillator.  相似文献   

11.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

12.
We report analytical and experimental studies on the characteristics of a high-brightness laser diode endpumped Nd:YVO4/KTP laser. A simple model was developed to optimize the cavity parameters and estimate the green output power of intracavity frequency doubled lasers. Using a 1 W high-brightness laser diode as the pump source, high efficiency operation was realized. The second-harmonic output power at 532 nm was measured to be 286.5 mW at an incident pump power of 881.4 mW, corresponding to an optical to optical efficiency of 32.5%.  相似文献   

13.
LD泵浦Nd:YVO4/KTP/BBO紫外激光器   总被引:3,自引:0,他引:3  
本文报道在国内首次实现的LD泵浦的四倍频连续紫外激光器的实验结果.首先研究了LD泵浦的Nd:YVO4激光器,在普通平-平腔结构下,得到斜效率55.68%,激光输出波长1064nm;利用KTP作为倍频晶体,实现腔内倍频,在泵浦功率11.85W时得到绿光(532nm)输出1.35W,光-光转换效率11%;用BBO晶体进行外腔谐振倍频,得到紫外光(266nm)输出.  相似文献   

14.
A highly efficient 880 nm laser diode pumped actively Q-switched Nd:YVO4/BaWO4 eye-safe Raman laser is demonstrated. With an absorbed pump power of 10.9 W, 1.7 W of average output power at the Stokes wave-length is generated at a PRF of 40 kHz, corresponding to a diode-to-Stokes conversion efficiency of 15.6%.  相似文献   

15.
Operational characteristics of a dual gain single cavity Nd:YVO4 laser have been investigated. With semiconductor diode laser pump power of 2 W, 800 mW output was obtained with a slope efficiency of 49%. Further, by changing the relative orientation of the two crystals the polarization characteristics of the output could be varied. In particular by keeping the two Nd:YVO4 crystals with their c-axes orthogonal to each other and adjusting the gain of the crystals so that both operate at approximately the same power level, completely unpolarized beams could be obtained.  相似文献   

16.
The paper presents experimental investigation and modeling of an end-pumped quasi-continuous-wave YVO4/Nd:YVO4 mini self-Raman laser. The dependence of the Stokes output power on the pump power in the range from 3 to 17.5 W has been measured. As much as 1.76 W of an average Stokes power, corresponding to a total optical-to-optical conversion efficiency of about 10%, has been obtained. The transverse profiles of the laser (at the fundamental wavelength) and the Stokes beam intensity have been recorded at the output mirror and in the vicinity of the boundary between the pure and Nd-doped parts of the Raman crystal. These distributions have been approximated by the sum of Gaussian and super-Gaussian distributions with corresponding weights. We propose a model of such lasers that takes into account the features of intracavity self-frequency Raman conversion in lasers with highly inhomogeneous non-Gaussian spatial distributions of the pump, laser, and Stokes beam intensity in the cavity. The results of modeling are in good agreement with the experimental data.  相似文献   

17.
An acousto-optically Q-switched self-Raman laser emitting at 1097 nm is demonstrated with a c-cut Nd:YVO4 crystal, using a fiber-coupled 880 nm diode laser as the pumping source. Raman laser performances in concave-plane and plane-plane oscillating cavities are studied and compared. With an absorbed diode power of 12.4 W and a pulse repetition rate of 50 kHz, the highest output power of 1.45 W is obtained from the plane-plane cavity, corresponding to an optical-to-optical conversion efficiency of 11.7%.  相似文献   

18.
激光二极管抽运Nd∶YVO4晶体1342nm和671nm激光器研究   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了激光二极管抽运的Nd∶YVO4晶体1342和671nm激光特性.1342nm激光最大输出功率为1.75W,光-光转换效率为32.1%,斜效率为43%.利用Ⅰ类非临界相位匹配LBO晶体腔内倍频,当输入抽运功率为6W时,获得功率为502mW的671nm激光输出,光-光转换效率超过8.3%;当671nm激光输出功率为400mW时,短期的不稳定度小于2%. 关键词:  相似文献   

19.
Z. Zhao  Y. Dong  C. Liu  M. Hu  Z. Xiang  J. Ge  J. Chen 《Laser Physics》2009,19(11):2073-2076
A effective continuous-wave (CW), high power laser generated using a YVO4/Nd:YVO4 composite crystal is presented. 18.8 W output power in multi-mode has been achieved with a maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 60.26%. In TEM00 mode operation, 15.1 W output power also has been achieved with the maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 47.69%. With a 200 mm focal-length positive lens and using the moving knife-edge method, the beam quality factor is measured to be M2 = 1.2 for TEM00 mode beam.  相似文献   

20.
J. Gao  X. Yu  B. Wei  X. D. Wu 《Laser Physics》2010,20(7):1590-1593
We present experimental investigation on quasi-three-level Nd:YVO4 laser operation at 914 nm under 879 nm diode pumping directly into emitting level. A maximal output power of 3.0 W under an absorbed pump power of 13.4 W was got, corresponding to an optical conversion efficiency of 22.4% and a slope efficiency of 40.3%. To the best of our knowledge, this is the first report on a Nd:YVO4 laser at 914 nm using rod-type single crystal as the gain medium and end pumped by diode directly into the emitting level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号