首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
This study explores the viability of rare earth-doped zirconia nanophosphors as probable candidates for white light emission. Undoped ZrO2 and single- and double-doped ZrO2:M (where M?=?Tb3+ and Eu3+) nanophosphors have been synthesized using a simple sonochemical process. The products were characterized using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence spectrophotometry. The SEM micrographs show that resultant nanoparticles have dendritic shape. TEM and HRTEM studies showed that the size of the majority of the nanoparticles were around 28?±?5?nm. Characteristic blue and green emission from Tb3+ ions and red from Eu3+ dopant ions were observed. The CIE coordinates of the double-doped ZrO2:Tb3+ (1.2?%):Eu3+ (0.8?%) nanophosphor lie in the white light region of the chromaticity diagram and show promise as good phosphor materials for new lighting devices.  相似文献   

2.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

3.
Lithium titanate ceramics doped with three rare earth (RE) ions namely Eu3+, Dy3+ and Tb3+ were synthesized and their photoluminescence (PL) properties were investigated. PL spectra of Eu doped sample showed peaks corresponding to the 5D07Fj (j=0, 1, 2, 3 and 4) transitions under 230 nm excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in a highly asymmetric environment. Dy doped samples showed the Dy3+ emission characteristic due to 4F9/26H15/2 and 4F9/26H13/2 transitions. Their relative intensity ratios also suggested the presence of asymmetric environment around the metal ion. In case of the Tb3+ doped sample blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions was seen. The fluorescence lifetimes of Eu3+, Dy3+ and Tb3+ ions were found to be 645, 900 and 740 μs, respectively. PL intensity of the individual rare earth doped samples was compared with commercial red and green phosphors. It was found that the emission from Eu doped titanate sample was 46% of the commercial red phosphor and in case of the Tb samples it was 30% when excited at 230 nm. However, the synthesized Eu doped titanate sample showed better color purity as compared to the commercial phosphor. The titanate host was doped with all the three rare earths to get white light emission from the system. The individual rare earth ion content was optimized so as to get a near white light emission. The color coordinates of the triple doped systems were evaluated and plotted on the CIE xy diagram. Our results suggest that lithium titanate has enough potential to be a phosphor material.  相似文献   

4.
Yttrium aluminum garnet nanoparticles both undoped and doped with lanthanide ions (Ce3+, Eu3+, Dy3+ and Tb3+) having average size around 30 (±3 nm) nm were prepared by glycine nitrate combustion method followed by annealing at a relatively low temperature of 800 °C. Increase in the annealing temperature has been found to improve the luminescence intensity and for 1200 °C heated samples there exists strong energy transfer from Tb3+ to Ce3+ ions in YAG:Ce(2%),Tb(2%) nanoparticles as revealed by luminescence studies. Co-doping the YAG:Ce nanoparticles with Eu3+ results in significant decrease in the emission intensity of both Ce3+ and Eu3+ ions and this has been attributed to the oxidation of Ce3+ to Ce4+ and reduction of Eu3+ to Eu2+ ions. Dy3+ co-doping did not have any effect on the Ce3+ emission as there is no energy transfer between Dy3+ and Ce3+ ions.  相似文献   

5.
Eu3+ ion doped chlorophosphate glass ceramics containing nanocrystals were successfully prepared, and their spectroscopic characterizations were done using absorption, excitation and emission spectra. For the crystallized samples, X-ray diffraction (XRD) and transmission electron microscopy (TEM) experiments evidenced the formation of CaCl2 nanocrystals. The absorption and emission spectra investigations indicate that a considerable amount of Eu3+ ions was trapped in CaCl2 nanocrystals, and therefore an efficient up- and down-frequency conversion was observed. The comparative spectroscopic studies of Eu3+ doped samples suggest that the investigated glass ceramics systems are potentially applicable as frequency-conversion photonics devices.  相似文献   

6.
Red-emitting Y2O3:Eu3+ and green-emitting Y2O3:Tb3+ and Y2O3:Eu3+, Tb3+ nanorods were synthesized by hydrothermal method. Their structure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photoluminescence (PL) property of Y2O3:Eu3+,Tb3+ phosphor was investigated. In the same host (Y2O3), upon excitation with ultraviolet (UV) irradiation, it is shown that there are strong emissions at around 610 and 545 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+ and 5D4-7F5 transition of Tb3+, respectively. Different qualities of Eu3+and Tb3+ ions are induced into the Y2O3 lattice. From the excitation spectrum, we speculate that there exists energy transfer from Tb3+ to Eu3+ ions .The emission color of powders reveals regular change in the separation of light emission. These powders can meet with the request of optical display material for different colors or can be potentially used as labels for biological molecules.  相似文献   

7.
This paper reports the photoluminescence and afterglow behavior of Eu2+ and Eu3+ in Sr3Al2O6 matrix co-doped with Dy3+. The samples containing Eu2+ and Eu3+ were prepared via solid-state reaction. X-ray diffraction (XRD), photo luminescent spectroscope (PLS) and thermal luminescent spectroscope (TLS) were employed to characterize the phosphors. The comparison between the emission spectra revealed that Sr3Al2O6 phosphors doped with Eu2+, Dy3+ and Eu3+, Dy3+ showed different photoluminescence. The phosphor doped with Eu3+, Dy3+ showed an intrinsic f-f transition generated from Eu3+, with two significant emissions at 591 and 610 nm. However, the phosphor doped with Eu2+, Dy3+ revealed a broad d-f emission centering around 512 nm. After the UV source was turned off, Eu2+, Dy3+ activated Sr3Al2O6 phosphor showed excellent afterglow while Eu3+, Dy3+ activated phosphor almost showed no afterglow. Thermal simulated luminescence study indicated that the persistent afterglow of Sr3Al2O6: Eu2+, Dy3+ phosphor was generated by suitable electron traps formed by the co-doped rare-earth ions (Dy3+) within the host.  相似文献   

8.
Tb3+- or Eu3+-doped magnesium silicate phosphors were prepared for the first time by using a novel approach, combined sol-gel-microwave heating. X-ray diffraction (XRD), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and photoluminescence analyses were used to characterize the phosphors. XRD confirmed a forsterite lattice of Mg2SiO4 for the phosphors. TEM observation indicated that the phosphors have a spherical-like shape with little aggregation and the particle size is about 50 nm, and the small size is favorable to the potential application in field emission displays. The luminescent colors of Mg2SiO4:Tb3+ and Mg2SiO4:Eu3+ phosphors are green and red respectively, furthermore the luminescent intensities of them are relatively higher than the traditional Zn2SiO4:Tb3+ and Zn2SiO4:Eu3+ phosphors. In addition, Eu3+ ion emissions as a structural probe suggest that the rare earth ions replace the Mg2+ ions in the site of M2 (Cs) in the forsterite lattice of Mg2SiO4.  相似文献   

9.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

10.
LiCaBO3:M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors were synthesized by a normal solid-state reaction using CaCO3, H3BO3, Li2CO3, Na2CO3, K2CO3, Eu2O3, Sm2O3, Tb4O7, CeO2 and Dy2O3 as starting materials. The emission and excitation spectra were measured by a SHIMADZU RF-540 UV spectrophotometer. And the results show that these phosphors can be excited effectively by near-ultraviolet light-emitting diodes (UVLED), and emit red, green and blue light. Consequently, these phosphors are promising phosphors for white light-emitting diodes (LEDs). Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

11.
A series of different concentrations of Eu3+ and Dy3+ ions co-doping yttrium vanadate phosphors coated with Fe3O4 (YVO4:Eu3+, Dy3+@Fe3O4) was successful prepared by using two steps route including sol?Cgel method and hydrothermal method. The resulting phase formation, particle morphology, structure, luminescent, and magnetic properties were examined by X-ray diffraction, transmission electron microscopy, photoluminescence spectra, and vibrating sample magnetometer. The results indicate that the diameter of the YVO4:Eu3+, Dy3+@Fe3O4 nanocomposites is 100?C300?nm. The special saturation magnetization Ms of the nanocomposites is 53?emu/g. Additionally, the emission intensities of YVO4:Eu3+ or Dy3+ ions are regularly changed with the emission doping concentrations. After coating with Fe3O4, the variation of the luminescent intensity of YVO4:Eu3+, Dy3+@Fe3O4 magnetic phosphors is different.  相似文献   

12.
Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were synthesized by the hydrothermal reaction method. The structural refinement was conducted on the base of the X-ray powder diffraction (XRD) measurements. The surface properties of the Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were investigated by the measurements such as the scanning electron microscope (SEM), transmission electron microscope (TEM), and the energy dispersive spectrum (EDS). The nanofiber has a diameter of about 100 nm and a length of several micrometers. The luminescence properties such as photoluminescence excitation (PLE) and emission spectra (PL), decay lifetime, color coordinates, and the absolute internal quantum efficiency (QE) were reported. Ca2B2O5:Eu3+ nanofibers show the red luminescence with CIE coordinates of (x = 0.41, y = 0.51) and the luminescence lifetime of 0.63 ms. The luminescence of Ca2B2O5:Tb3+ nanofibers is green color (x = 0.29, y = 0.53) with the lifetime of 2.13 ms. However, Dy3+-doped Ca2B2O5 nanofibers present a single-phase white-color phosphor with the fluorescence decay of 3.05 ms. Upon near-UV excitation, the absolute quantum efficiency is measured to be 65, 35, and 37 % for Eu3+-, Tb3+-, Dy3+-doped Ca2B2O5 nanofibers, respectively. It is suggested that Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers could be an efficient phosphor for lighting and display.  相似文献   

13.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

14.
This paper reports the structural and optical properties of rare earth doped and codoped yttrium oxide nanophosphors. Dysprosium (Dy3+) and Terbium (Tb3+) doped and codoped yttrium oxide (Y2O3) phosphors were prepared by combustion synthesis method and subsequently annealed to high temperature to eliminate the hydroxyl group (?OH) and to get more crystallinity. The formation of compounds was confirmed by the X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR). The diffuse reflectance spectra (DRS) of doped and codoped Y2O3 powder phosphors were measured and it is observed that the absorption edge of the doped samples is shifted towards blue region with respect to undoped sample. The bandgap of the prepared samples were evaluated with the help of Kubelka-Munk function using Diffuse Reflectance Spectra (DRS) and an increase in bandgap was observed with the decrease in crystallite size. A strong characteristics emission from Tb3+ and Dy3+ ions was identified and the influence of doping concentration and annealing temperature on photoluminescence properties was systematically studied. Transfer of energy was observed in dysprosium–terbium codoped Y2O3 nanophosphor at room temperature from Dy3+ ions toTb3+ ions.  相似文献   

15.
Highly uniform and monodisperse KY3F10:Ln3+ (Ln=Eu, Ce, Tb) nanospheres, with an average diameter of 300 nm, have been successfully prepared through a simple template-free and surfactant-free stirring method under ambient conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The SEM images illustrate that these spheres were actually composed of randomly aggregated nanoparticles. The doped rare earth ions show their characteristic emission in the KY3F10 samples, i.e., Eu3+ 5D07FJ (J=1, 2, 3, 4), Tb3+ 5D47FJ (J=6, 5, 4, 3, 2) and Ce3+ 5d–4f transition emissions, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in KY3F10 nanospheres, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.  相似文献   

16.
Nanocrystal rods of Eu3+/Tb3+-co-doped ZrO2 were synthesized using a simple chemical precipitation technique. Both ions were successfully doped into the Zr4+ ion site in a mixed structure containing both monoclinic and tetragonal phases. The Eu3+ or Tb3+ singly doped zirconia produced red and green luminescence which are characteristics of Eu3+ and Tb3+ ions, respectively. The co-doped zirconia samples produced blue emission from defect states transitions in the host ZrO2, red and green luminescence from dopant ions giving cool to warm white light emissions. The phosphors were efficiently excited by ultraviolet and near-ultraviolet/blue radiations giving white and red light, respectively. The decay lifetime was found to increase with increasing donor ion concentration contrary to conventional observations reported by previous researchers. Weak quadrupole–quatdrupole multipolar process was responsible for energy transfer from Tb3+ (donor) ion to Eu3+ ion. No energy back-transfer from Eu3+ to Tb3+ ion was observed from the excitation spectra. Temperature-dependent photoluminescence shows the presence of defects at low temperature, but these defects vanished at room temperature and beyond. The Eu3+/Tb3+-co-doped ZrO2 nanocrystal rod is a potential phosphor for white light application using UV as an excitation source. Thermoluminescence measurements show that the inclusion of Tb3+ ion increases trap depths in the host zirconia.  相似文献   

17.
Single crystals of Ba2NaNb5O15 (BNN) singly doped with Sm3+, Eu3+, Tb3+ or Dy3+ have been grown by means of the flux growth method. Their visible emission and excitation spectra and the decay profiles of the luminescence have been measured at room temperature. All spectral features are significantly inhomogeneously broadened in consequence of the structural disorder of the host and of the doping mechanisms. The analysis of the observed spectra allows formulating an hypothesis about the site occupancy of the active ions in the BNN lattice.  相似文献   

18.
Oleic acid (OA)-modified CaF2:Tb3+ nanoparticles with various Tb3+ concentrations and CaF2:Ce3+, Tb3+ nanoparticles were synthesized. The as-prepared nanoparticles were shown to be well dissolved in some common organic solvents, such as chloroform and toluene. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD) and transmission electron microscopy (TEM). The investigation of fluorescence properties of CaF2:Tb3+ nanoparticles showed that the Tb3+ ions could be sensitized efficiently by the surface coating of OA and CaF2:Tb3+ nanoparticles with 10 mol% Tb3+ concentrations possess the highest emission intensity. The comparison of emission for CaF2:Ce3+, Tb3+ and CaF2:Tb3+ (10 mol%) nanoparticles revealed that the emission intensity of the former is about 4.5 times as strong as that of the latter.  相似文献   

19.
Spherical SiO2 particles have been coated with Zn2SiO4:Eu3+ phosphor layers by a Pechini sol-gel process. The microstructure and luminescent properties of the obtained Zn2SiO4:Eu3+@SiO2 particles were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and lifetime. The results demonstrate that the Zn2SiO4:Eu3+@SiO2 particles, which have regular and uniform spherical morphology, emitted an intensive red light emission at 613 nm under excitation at 395 nm. Besides, the effects of the Eu3+ concentration, annealing temperature and charge compensators of Li+ ions on the PL emission intensities were investigated in detail.  相似文献   

20.
By using metal nitrates as starting materials and citric acid as complexing agent, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ powder phosphors were prepared by a citrate-gel method. Thermal analysis (TG-DTG), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), photoluminescence excitation and emission, as well as kinetic decays were employed to characterize the resulting samples. The results of the XRD indicated the precursor samples began to crystallize at 800 °C and the crystallinity increased with elevation the annealing temperature. TEM images showed that the phosphor particles were basically of spherical shape, with good dispersion about a particle size of around 40-70 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+, and at around 543 nm corresponding to the 5D4-7F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号