首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan, a naturally abundant biopolymer, has widely been studied for metal adsorption from various aqueous solutions, but the extension of chitosan as an adsorbent to remove humic substances from water has seldom been explored. In this study, chitosan was coated on the surface of polyethyleneterephthalate (PET) granules through a dip and phase inversion process and was examined for humic acid removal in a series of batch adsorption experiments. Scanning electron microscopic (SEM) images showed that the PET granules were uniformly covered with a layer of chitosan and the chitosan layer possessed numerous open pores on the surface. Zeta potential study indicated that the chitosan-coated granules had positive zeta potentials at pH < 6.6 and negative zeta potentials at pH > 6.6. Adsorption of humic acid onto the chitosan-coated granules was found to be strongly pH-dependent. Significant amounts of humic acid were adsorbed under acidic and neutral pH conditions, but the adsorption capacity was reduced remarkably with increasing solution pH values. The adsorption isothermal data under various initial humic acid concentrations (at the same solution pH value) can be adequately modeled by the Langmuir and Freundlich models. X-ray photoelectron spectroscopy (XPS) revealed that the amino groups of the chitosan layer were protonated due to humic acid adsorption, suggesting the formation of organic complex between the protonated amino groups and humic acid. Kinetic study indicated that the adsorption process was transport-limited at low solution pH values, but became both transport- and attachment-limited at high solution pH values.  相似文献   

2.
Chitosan flakes, extracted from prawns and labeo rohita scales, with high adsorption capacity were prepared after chemical treatment and were used to remove acid yellow dye from water. The results showed that adsorption capacity is dependent on pH, initial concentration of dye, BET, Langmuir surface area and pore volume of the adsorbent. In acidic conditions, the polymer amino groups were protonated (positively charged polymer chain), which showed attraction with negative ions of anionic dye. Chitosan from prawns scales showed higher dye adsorption under the same experimental conditions. Adsorption isotherms were developed and equilibrium data fitted well to Langmuir and Freundlich isotherm models.  相似文献   

3.
4.
This study was undertaken to identify factors exerting the strongest influence on the adsorption of dye. The maximum adsorption capacity (at the adopted operating conditions) was the main parameter used to evaluate the process. In addition, the feasible adsorption capacity of chitosan was evaluated. Breakthrough experiments were carried out in a circulating air-lift reactor at a constant concentration of reactive dye Black 8 (100 mg/dm3). The tests studied different chitosan concentrations in the reactor and a range of flow intensities. The results of the breakthrough tests were compared by means of apparent mass transfer coefficients, determined by slopes at C/C 0=1/2. The adsorption capacity of chitosan was affected to the greatest extent by the flow rate of the medium to the reactor. In turn, the utilization of the maximum adsorption capacity of chitosan, at the assumed efficiency of dye removal, was determined by chitosan concentration in the reactor.  相似文献   

5.
The magnetic separation technique based on magnetic iron oxide nanoparticles (MNPs) has potential applications in protein adsorption and purification, enzyme immobilization, cell sorting, nucleic acid detachment, and drug release. However, the naked MNPs are often insufficient for their hydrophilicity, colloidal stability, and further functionalization. To overcome these limitations, chitosan was firstly carboxymethylated and then covalently conjugated on the surface of the MNPs ranging in size from about 5 to 15 nm, which were prepared by co-precipitating iron (II) and iron (III) in alkaline solution and then treating under hydrothermal conditions. It was found that such modification did not result in the phase change of the MNPs, and the resultant modified nanoparticles were still superparamagnetic. In particular, the colloidal stability of MNPs in aqueous suspension was improved after the surface modification. By investigating the adsorption of bovine serum albumin (BSA) on the modified MNPs, it was observed that the adsorption capacity of the BSA on the modified MNPs increased rapidly within several minutes and then reached the maximum value at about 10 min. The adsorption equilibrium isotherm could be fitted well by the Langmuir model. The medium pH affected greatly the adsorption of the BSA. The maximum adsorption of the BSA occurred at the pH value close to the isoelectric point of the BSA, with a saturation adsorption amount of 94.45 mg/g (25 °C). For the BSA feed concentration of 1.017 mg/ml, a high desorption percentage of 91.5% could be achieved under an alkaline condition (pH 9.4).  相似文献   

6.
Multi-walled and single-walled carbon nanotubes were used as nanoadsorbents for the successful removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised by infrared and Raman spectroscopy, N(2) adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. The general order kinetic model provided the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetic adsorption models. For Reactive Blue 4 dye, the equilibrium data (298 to 323 K) were best fitted to the Liu isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g(-1) for MWCNT and SWCNT, respectively. Simulated dyehouse effluents were used to check the applicability of the proposed nanoadsorbents for effluent treatment (removal of 99.89% and 99.98%, for MWCNT and SWCNT, respectively). The interaction of Reactive Blue 4 textile dye with single-walled carbon nanotubes (SWCNTs) was investigated using first principles calculations based on density functional theory. Results from ab initio calculations indicated that Reactive Blue 4 textile dye could be adsorbed on SWCNT through an electrostatic interaction; these results are in agreement with the experimental predictions.  相似文献   

7.
Cellulose nanocrystals (CNCs) prepared from cellulose fibre via sulfuric acid hydrolysis was used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of pH, adsorbent dosage, temperature, ionic strength, initial dye concentration were studied to optimize the conditions for the maximum adsorption of dye. Adsorption equilibrium data was fitted to both Langmuir and Freundlich isotherm models, where the Langmuir model better described the adsorption process. The maximum adsorption capacity was 118 mg dye/g CNC at 25 °C and pH 9. Calculated thermodynamic parameters, such as free energy change (ΔG = ?20.8 kJ/mol), enthalpy change (ΔH = ?3.45 kJ/mol), and entropy change (ΔS = 0.58 kJ/mol K) indicates that MB adsorption on CNCs is a spontaneous exothermic process. Tunability of the adsorption capacity by surface modification of CNCs was shown by oxidizing the primary hydroxyl groups on the CNC surface with TEMPO reagent and the adsorption capacity was increased from 118 to 769 mg dye/g CNC.  相似文献   

8.
Monoolein (MO) cubic phase incorporating hydrophobically modified chosan (Hm chitosan) was prepared to obtain a pH-dependent release. Following calorimetric study, Hm chitosan had little effect on the crystal structure of MO cubic phase under acidic condition where Hm chitosan is readily soluble. At a higher pH (e.g., pH 9.0), however, the crystal structure of MO cubic phase was disturbed, possibly due to the insolubilization of Hm chitosan at the alkali condition. Whether the dye included in the cubic phase is anionic (amaranth) or cationic (methylene blue), the release from the cubic phase was suppressed as the pH of release medium increased. The structural change of cubic phase caused by the insolubilization of Hm chitosan, or the blockage of the water channel of the cubic phase by precipitated Hm chitosan would be responsible for the suppressed released.  相似文献   

9.
Adsorption of chromium from aqueous solution using chitosan beads   总被引:1,自引:0,他引:1  
A basic investigation on the removal of Cr(III) and Cr(VI) ions from aqueous solution by chitosan beads was conducted in a batch adsorption system. The chitosan beads were prepared by casting an acidic chitosan solution into an alkaline solution. The influence of different experimental parameters; pH, agitation period and different concentration of Cr(III) and Cr(VI) ions was evaluated. A pH 5.0 was found to be an optimum pH for Cr(III) adsorption, and meanwhile pH 3.0 was the optimum pH for the adsorption of Cr(VI) onto chitosan beads. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Cr(III) and Cr(VI) onto chitosan beads. Results indicated that Cr(III) and Cr(VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacities of Cr(III) and Cr(VI) ions onto chitosan beads were 30.03 and 76.92 mg g−1, respectively. Results showed that chitosan beads are favourable adsorbents. The Cr(III) and Cr(VI) ions can be removed from the chitosan beads by treatment with an aqueous EDTA solution.  相似文献   

10.
刘秉涛  娄渊知  姜安玺 《化学研究》2006,17(3):46-48,63
研究了静态条件下壳聚糖对铝离子的吸附性能,探讨了壳聚糖吸附A l3+的最佳条件.结果表明,壳聚糖对水溶液中的A l3+吸附速度比较快,饱和吸附量为49.0 mg.g-1,适宜的pH为4,温度影响不大.对等温吸附平衡数据进行分析,符合Langmu ir吸附模型.对壳聚糖-铝(Ⅲ)配合物的红外光谱及电子能谱分析表明,壳聚糖分子中的氨基与A l3+发生了配位作用,吸附机理以单分子层化学吸附为主.  相似文献   

11.
Chitosan biopolymer chemically modified with the complexation agent 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol (BPMAMF) was employed to study the kinetics and the equilibrium adsorption of Cu(II), Cd(II), and Ni(II) metal ions as functions of the pH solution. The maximum adsorption of Cu(II) was found at pH 6.0, while the Cd(II) and Ni(II) maximum adsorption occurred in acidic media, at pH 2.0 and 3.0, respectively. The kinetics was evaluated utilizing the pseudo-first-order and pseudo-second-order equation models and the equilibrium data were analyzed by Langmuir and Freundlich isotherms models. The adsorption kinetics follows the mechanism of the pseudo-second-order equation for all studied systems and this mechanism suggests that the adsorption rate of metal ions by CHS-BPMAMF depends on the number of ions on the adsorbent surface, as well as on their number at equilibrium. The best interpretation for the equilibrium data was given by the Langmuir isotherm and the maximum adsorption capacities were 109 mg g-1 for Cu(II), 38.5 mg g-1 for Cd(II), and 9.6 mg g-1 for Ni(II). The obtained results show that chitosan modified with BPMAMF ligand presented higher adsorption capacity for Cu(II) in all studied pH ranges.  相似文献   

12.
The adsorption of a reactive dye, Reactive Yellow 84, from aqueous solution onto synthesized hydroxyapatite was investigated. The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, absorbent dosage, initial dye concentration, temperature and pH of dye solution. The experimental results show that the amount of dye adsorbed increases with an increase in the amount of hydroxyapatite. The maximum adsorption occurred at the pH value of 5. The equilibrium uptake was increased with an increase in the initial dye concentration in solution. The experimental isotherm data were analyzed using Langmuir isotherm equation. The maximum monolayer adsorption capacity was 50.25 mg/g. The adsorption has a low temperature dependency and was endothermic in nature with an enthalpy of adsorption of 2.17 kJ mol−1.  相似文献   

13.
一步法制备聚脲多孔材料及其对染料的吸附   总被引:2,自引:0,他引:2  
以甲苯二异氰酸酯为单体, 在水和丙酮混合溶剂中不用致孔剂且无需任何高分子改性一步法合成了聚脲多孔材料(PPU), 通过扫描电镜和BET氮气吸附法对其表面形貌和孔参数进行了表征. 以酸品红(AF)溶液模拟染料废水, 对其在PPU上的吸附进行了研究, 讨论了pH、 吸附时间、 AF初始浓度及吸附剂用量对吸附过程的影响, 优化了吸附条件. 结果表明, PPU对染料AF具有优异的吸附效果. PPU在30℃, pH=3时对AF的最大吸附量为44.60 mg/g. PPU对AF的吸附过程更接近于Langmuir等温吸附的单分子层吸附机理. PPU对水溶性染料刚果红(CR)也有很好的吸附能力. 使用水、 乙醇和水混合溶剂以及NaOH水溶液对染料吸附后的解吸附结果表明, 乙醇和水混合溶剂对吸附染料的解吸效率最高, 对2种染料的解吸附都达90%以上. 解吸后PPU的再吸附能力略有下降, 但第三次吸附量仍达到首次吸附的80%以上.  相似文献   

14.
Arsenic contamination in water, especially in groundwater, has been recognized as an important issue of concern because of its high mobility and toxicity. In this study, N-methylglucamine was immobilized onto crosslinked chitosan beads via atom transfer radical polymerization for an efficient adsorption of arsenic. It was demonstrated that the immobilization significantly enhanced the adsorption capacity. The uptake onto the adsorbent was highly pH dependent, and a maximum adsorption capacity as high as 69.28 mg/g was obtained at the optimum pH of 5. Most of arsenate was rapidly adsorbed in the first 5h, and the adsorption equilibrium was established in 16 h, which was well described by an intraparticle diffusion model. The adsorbent exhibited a great uptake of the humic acid, which led to a decrease in the adsorption of arsenate. The effects of competitive anions on the adsorption exhibited the following descending sequence: sulfate ? phosphate>fluoride (negligible effect). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that the arsenic adsorption resulted from the presence of tertiary amine and hydroxyl functional groups grafted on the crosslinked chitosan.  相似文献   

15.
By the Schiff-base condensation of formacyl calix[4]crown(2) with raw chitosan, a novel calix[4]crown- grafted chitosan chelating polymer(3) was conveniently prepared in good yield. The structure of polymer 3 was confirmed by elemental analysis, infrared(IR) spectrometry and X-ray diffraction(XRD) analysis. The elemental analysis suggests that the grafting degree of calixcrown unit was 22% on the amino groups of chitosan. The morphological characteristic of polymer 3 was studied by scanning electron microscopy(SEM). Polymer 3 possessed loose porous and smooth morphology of surface. The dyes adsorption abilities of polymer 3 for a series of organic dyes[Orange I(OI), Neutral red(NR), Victoria blue B(VB) and Brilliant green(BG)] were studied by solid-liquid adsorption experiments. The adsorption percentages increased from 45%―60%(raw chitosan for dyes) to 75%―90%(polymer 3 for dyes). The highest adsorption percentage reached 89% for VB. The saturated adsorption capacities for OI, NR, VB and BG were as high as 622, 564, 854 and 781 mg/g, respectively. The adsorption abilities kept stable at 70%―90% in the scope of pH=5―9. The adsorption abilities for anionic dye(OI) decreased gradually with the increase of pH and the opposite trend was observed for cationic dyes(NR, BG, VB). The adsorption percentages were 70%―90% after five times' cycles for adsorption.  相似文献   

16.
The ion-imprinted magnetic chitosan resins (IMCR) prepared using U(VI) as a template and glutaraldehyde as a cross-linker showed higher adsorption capacity and selectivity for the U(VI) ions compared with the non-imprinted magnetic chitosan resins (NIMCR) without a template. The results showed that the adsorption of U(VI) on the magnetic chitosan resins was affected by the initial pH value, the initial U(VI) concentration, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments were fitted in Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherm models to show very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The monolayer adsorption capacity values of 187.26 mg/g for IMCR and 160.77 mg/g for NIMCR were very close to the maximum capacity values obtained at pH 5.0, temperature 298 K, adsorbent dose 50 mg, and contact time 3 h. The selectivity coefficient of uranyl ions and other metal ions on IMCR indicated an overall preference for uranyl ions. Furthermore, the IMCR could be regenerated through the desorption of the U(VI) ions using 0.5 M HNO(3) solution and could be reused to adsorb again.  相似文献   

17.
A series of commercial unmodified and modified activated carbons was studied. The surface chemical composition was characterized using X-ray photoelectron spectroscopy and Boehm titration methods. Data on p-nitrophenol (pnp) adsorption isotherms determined under real oxic and anoxic conditions (at 310 K) are presented and described using bimodal Langmuir and lattice density functional theory models. The applicability of the pnp molecule for determination of surface area using adsorption from solution data is discussed. It is shown that under anoxic conditions adsorption and relative enthalpy of this process depend on the value of BET apparent surface area and DA micropore volumes. The differences between adsorption levels under both conditions increase with rise in solute equilibrium concentration. Moreover, the average difference between adsorption values under both conditions increases and next decreases with rise in the concentration of surface acidic groups. Applying quantum chemical calculations, we show that under anoxic conditions the influence of surface oxygen groups on pnp adsorption is small, whereas under oxic conditions the reverse situation is observed. Obtained theoretical results show very good correspondence to the experimental data and the origin of the relationships observed experimentally is explained and discussed.  相似文献   

18.
Poly(N,N-dimethylacrylamide-co-sodium acrylate) hydrogel, which bears negatively charged –COO groups was used to extract organic or inorganic solutes from water. Some model dyes and metal ions have been studied. Cationic dyes are strongly adsorbed and retained by the polymer while adsorbance of hydrophobic dyes was very low and that of anionic dyes was negligible. Both maximum adsorption and equilibrium binding constant varied from one cationic species to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic–hydrophilic balance. In the case of metal cations, adsorption depended on valence. The hydrogel can be regenerated in an aqueous phase of low pH and thus be reused in several adsorption procedures.  相似文献   

19.
In this paper, the modified magnetic chitosan resin containing diethylenetriamine functional groups (DETA-MCS) was used for the adsorption of uranium ions from aqueous solutions. The influence of experimental conditions such as contact time, pH value and initial uranium(VI) concentration was studied. The Langmuir, Freundlich, Sips and Dubinin–Radushkevich equations were used to check the fitting of adsorption data to the equilibrium isotherm. The best fit for U(VI) was obtained with the Sips model. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. The present results suggest that DETA-MCS is an adsorbent for the efficient removal of uranium(VI) from aqueous solution.  相似文献   

20.
去质子化调控的肝素/壳聚糖抗凝血多层膜   总被引:4,自引:0,他引:4  
本文研究了环境pH值变化对多层膜表面性能的影响, 并且评价了组装pH值与测试pH值的差异对多层膜血液相容性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号