首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the backscattering of particulate surfaces consisting of dry biological particles using two laboratory photopolarimeters that measure intensity and degree of linear polarization in a phase-angle range 0.2-60°. We measure scattering properties from three samples composed of dry biological particles, Bacillus subtilis var. niger (BG) spores and samples of fungi Aspergillus terreus and Sporisorium cruentum spores. We find that the surfaces display a prominent brightness opposition effect and significant negative polarization near backscattering angles. The brightness and polarimetric phase curves are different for B. subtilis and the fungi.  相似文献   

2.
We report results of experiments designed to increase our understanding of the influence of particle size on the photometric opposition spike and negative polarization observed in the reflectance and polarization phase curves of particulate surfaces. We concentrate our studies on particle-size separates of alumina (bright powders) and boron carbide (absorbing powders). We use two photopolarimeters that span small (0.2-17°) and large (2-160°) phase-angle ranges. The results suggest that the negative polarization has two dominant mechanisms: (1) the coherent-backscatter enhancement and (2) single-particle scatter, and that the contributions of the mechanisms are a function of particle size. The measured photometric and polarimetric phase functions can be applied to evaluate models used to calculate scattering properties of particulate surfaces.  相似文献   

3.
D. K. Saha  K. Koga  H. Takeo 《Surface science》1998,400(1-3):134-139
The thermal parameter B for three different particle sizes of diamond samples (bulk powder 1–4 μm, fine particle 144–195 Å and cluster 55–61 Å) was determined by the grazing incidence X-ray diffraction method. The values of B were found to be in the range 0.50–0.70 Å2 for particles in the size range 195–55 Å and 0.27 Å2 for 1–4 μm. All of them are larger than that of diamond bulk. A clear size dependence of B, increasing with decreasing particle size, was found. By analysing X-ray diffraction data at several temperatures the magnitude of B was found to be due to BS (static part) instead of BT (dynamic part). The average BS values obtained were 0.04 Å2, 0.19 Å2 and 0.27 Å2 for bulk powder, fine particle and cluster samples respectively. Ultrahigh resolution transmission electron microscope (TEM) observation confirmed the presence of strain, distortion, roughness and dislocation lines in many particles. TEM images of particles indicate that the clusters were not spherical in shape; they were mostly cubiform and some were truncated prism-like polyhedral. The present study reveals that the BS component is responsible for the large B value in diamond fine particles and clusters. No clear surface local atomic distortion was found in the particles.  相似文献   

4.
We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption 2–5 μm and 8–12 μm bands. Recent LWIR devices have produced detectivities as high as 8 × 1010 Jones with a differential resistance–area product greater than 6 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 12 μm. The measured internal quantum efficiency of these front-side illuminated devices is close to 30% in the 10–11 μm range. MWIR devices have produced detectivities as high as 8 × 1013 Jones with a differential resistance–area product greater than 3 × 107 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 3.7 μm. The measured internal quantum efficiency of these front-side illuminated MWIR devices is close to 40% in the 2–3 μm range at low temperature and increases to over 60% near room temperature.  相似文献   

5.
This study focuses on the chemical, morphological and structural characterization of iron surfaces treated by laser in ambient air. Incorporation of nitrogen over a 1–2 μm thickness (10–30 at.% at the profile maximum) and superficial oxidation on 200–400 nm depth have been evidenced by nuclear reaction analyses. X-ray diffraction at grazing incidence has shown the formation of FeO and Fe3O4 oxide phases as well as γ-Fe(N), and ε-FexN for a sufficiently high amount of nitrogen incorporated. Treatments performed with different laser beams indicate that the parameter playing the major role in surface modification processes is the wavelength. Nitrogen incorporation has been found to occur via the interaction of reactive N, present in the laser-induced plasma, and the iron molten bath. The nitriding process is promoted in the IR wavelength range. Oxidation takes place by chemical reaction during the cooling step, and is furthered in the case of UV treatment.  相似文献   

6.
A 9 μm cutoff 640 × 512 pixel hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated with excellent imagery. A noise equivalent differential temperature (NEDT) of 10.6 mK is expected at a 65 K operating temperature with f/2 optics at a 300 K background. This focal plane array has shown background limited performance at a 72 K operating temperature with the same optics and background conditions. In this paper, we discuss the development of this very sensitive long-wavelength infrared camera based on a GaAs/AlGaAs QWIP focal plane array and its performance in quantum efficiency, NEDT, uniformity, and operability. In the second section of this paper, we discuss the first demonstration of a monolithic spatially separated four-band 640 × 512 pixel QWIP focal plane array and its performance. The four spectral bands cover 4–5.5, 8.5–10, 10–12, and 13.5–15 μm spectral regions with 640 × 128 pixels in each band. In the last section, we discuss the array performance of a 640 × 512 pixel broad-band (10–16 μm full-width at half-maximum) QWIP focal plane.  相似文献   

7.
In order to study the effect of shape on the optical properties of dust grains, we statistically analyze the linear polarized scattered light. We start by examining a homogeneous spherical grain using the discrete dipole approximation (DDA) Draine (Astrophys J 1988;333:848). Using a uniform law we remove elements of matter on the surface of the grain to describe a random roughness. Then, for various scattering angles, the linear polarization Pl is calculated. We successively repeat the simulation in order to obtain a sample of random variables constituting the values Pl of the linear polarization. The analysis of the results is then achieved through a Gaussian kernel method which provides the probability density function of Pl for each scattering angle. We present the results for a typical interstellar grain of water–ice with radius a comparable to the incident wavelength λ so that the parameter size x≡2πa/λ1. We apply this method for two wavelengths in the near IR, when water–ice is transparent at 1.9 μm, and, when water–ice is absorbing at 3.1 μm. We find that the shape of the density function of the linear polarization is asymmetric to the mean value of the density function and non-unimodal for several scattering angles. This allows us to separate the effects of roughness from those of volume. When water–ice is absorbing, we also observe a significant shift of the polarization peak toward greater scattering angles.  相似文献   

8.
Enhanced field emission of electrons from silicon surfaces was obtained by surface microstructuring, by means of electrochemical oxidation in organic solutions containing HF. Morphological characterisations showed the formation of cylindrical rods, randomly distributed with relative spacing of a few microns. They are originated at the top of silicon pyramids and have typical diameter in the 100 nm range. Variable length in the 1–50 μm range was obtained, by adjusting the process parameters. Electron field emission properties were characterised for several samples, prepared in different conditions: the emission threshold was found to be strongly correlated with the overall charge exchanged during electrochemical oxidation. In the most favourable conditions, the threshold field for the emission of an electron current Ith = 10−10 A was 11.1 V/μm.  相似文献   

9.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a four band, 640 × 512, 23 μm × 23 μm pixel array which we have subsequently integrated with a linear variable etalon (LVE) filter providing over 200 spectral bands across the 4–15.4 μm wavelength region. This effort was a collaboration between NASA’s Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL) and the Army Research Laboratory (ARL) sponsored by the Earth Science Technology Office of NASA. The QWIP array was fabricated by graded molecular beam epitaxial (MBE) growth that was specifically tailored to yield four distinct bands (FWHM): Band 1; 4.5–5.7 μm, Band 2; 8.5–10 μm, Band 3; 10–12 μm and Band 4; 13.3–14.8 μm. Each band occupies a swath that comprises 128 × 640 elements. The addition of the LVE (which is placed directly over the array) further divides the four “broad” bands into 209 separate spectral bands ranging in width from 0.02 μm at 5 μm to 0.05 μm at 15 μm. The detector is cooled by a mechanical cryocooler to 46 K. The camera system is a fully reflective, f/4.2, 3-mirror system with a 21° × 25° field of view. The project goals were: (1) develop the 4 band GaAs QWIP array; (2) develop the LVE and; (3) implement a mechanical cryocooler. This paper will describe the efforts and results of this undertaking with emphasis on the overall system characteristics.  相似文献   

10.
We investigated, both theoretically and experimentally, the dependence of the intensity of spectral lines of thermal radiation from plane-parallel semiconductor resonator structures on their optical parameters (volume absorption and coefficients of reflection from surfaces). The investigations were performed in the spectral region of absorption by free charge carriers (λ = 3–17 μm). It is shown for such structures that the amplitudes of thermal radiation lines depend non-monotonically on the transmission factor. We determined the optical parameter values for a resonator structure that are optimal when forming comb radiation spectrum. The conditions are found under which the intensity of lines of thermal radiation from a semiconductor plane-parallel layer approaches that of thermal radiation from a blackbody.  相似文献   

11.
The problem of retrieval of size and refractive index of a spherical particle by angular dependence of scattered light in scanning flow cytometry is considered. For its solution, the high-order neural networks are used. We restricted the range of angles available for measurement from 10° to 60°. The retrieval errors of characteristics of nonabsorbing particles were investigated at the ranges of the radius and relative refractive index 0.6–10.6 μm, and 1.02–1.38, respectively.  相似文献   

12.
Atmospheric radiation in the infrared (IR) 8–13 μm spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time-domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 μm. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 and 10,000 μm over the wavelengths ranging from 8 to 13 μm. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 μm. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8–13 μm spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, the extinction and absorption efficiencies are computed for hexagonal ice crystals with sizes ranging from 1 to 10,000 μm at 12 wavelengths between 8 and 13 μm.

Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Ice crystals are assumed to be hexagonal columns randomly oriented in space. The bulk scattering properties are parameterized through the use of second-order polynomial functions for the extinction efficiency and the single-scattering albedo and a power-law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 μm whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 μm. For effective sizes larger than 100 μm, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing studies of ice clouds involving IR window bands.  相似文献   


13.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

14.
We study theoretically the Co magnetization suppression at the Co–M (M=Ti, Nb, Mo, Re, Os, Ir and Pt) interface. We consider (1) M(1×1) overlayer on the FCC(1 1 1) or HCP(0 0 0 1) slab, (2) c(2×2) Co–M alloy above the same surfaces. In the latter case, the Co magnetization is reduced to about 0.5 μB by Ti, Nb, Mo and Re, but the effect is probably an overestimation because of compression of M–Co bonds. At Co atoms below the M(1×1) overlayer, the Co magnetization does not drop below 1 μB. We discuss also the Co–M antiferromagnetic coupling.  相似文献   

15.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a 1,024 × 1,024 (1K × 1K), 8–12  μm infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using an L3/Cincinnati Electronics silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). We have integrated the 1K × 1K array into an SE-IR based imaging camera system and performed tests over the 50–80 K temperature range achieving BLIP performance at an operating temperature of 57 K. The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. One of the advantages of GaAs QWIP technology is the ability to fabricate arrays in a fashion similar to and compatible with silicon IC technology. The designer’s ability to easily select the spectral response of the material from 3 μm to beyond 15 μm is the result of the success of band-gap engineering and the Army Research Lab is a leader in this area. In this paper we will present the first results of our 1K × 1K QWIP array development including fabrication methodology, test data and imaging capabilities.  相似文献   

16.
Sol–gel derived Fe2O3 films containing about 10 wt% of Er2O3 were deposited on porous silicon by dipping or by a spin-on technique followed by thermal processing at 1073 K for 15 min. The samples were characterized by means of PL, SEM and X-ray diffraction analyses. They exhibit strong room-temperature luminescence at 1.5 μm related to erbium in the sol–gel derived host. The luminescence intensity increases by a factor of 1000 when the samples are cooled from 300 to 4.2 K. After complete removal of the erbium-doped film by etching and partial etching the porous silicon, the erbium-related luminescence disappears. Following this, luminescence at 1.5 μm originating from optically active dislocations (“D-lines”) in porous silicon was detected. The influence of the conditions of synthesis on luminescence at 1.5 μm is discussed.  相似文献   

17.
It is common practice to use effective medium theories (EMT) to estimate average, “effective” optical constants of inhomogeneous materials. A variety of EMTs were developed for different internal structures of the medium and for a variety of shapes, size distributions and physical properties of the inhomogeneities. The most popular EMTs (Maxwell Garnett, Bruggeman, Looyenga, etc.) consider inhomogeneities that are much smaller than the wavelength. The so-called extended EMTs were developed to find effective optical constants in the case of inhomogeneities comparable and slightly larger than the wavelength. This paper compares angular distribution and wavelength dependence of intensity and polarization of scattered light obtained from calculations using the most popular EMTs and extended EMTs with the results of microwave analog measurements at the microwave facilities of the University of Florida. We simulated the light scattering by organic grains with silicate inclusions of size parameter x=0.075 (≈0.01 μm), 0.60 (≈0.1 μm), and 1.24 (≈0.2 μm). The conclusion is that for inclusions of a small size and for a small volume fraction of them in the mixture all EMTs yield similar results and show reasonable agreement with experimental results. The accuracy is better for the angular dependencies of the intensity and of the polarization of the scattered light than for their wavelength dependencies. For inhomogeneities comparable and larger than the wavelength extended EMTs work better but for smaller inclusions non-extended EMTs show more accurate results. Large volume fractions of the inclusions in the mixture (>10%) essentially reduce the accuracy of the results obtained with EMTs. Based on our study we do not recommend to use EMTs in the back-scattering domain and at the scattering angles 30°<θ<70°.  相似文献   

18.
Performance improvements of ultraviolet/infrared dual-band detectors   总被引:1,自引:0,他引:1  
Results are reported on dual-band detectors based on a GaN/AlGaN structure operating in both the ultraviolet–midinfrared (UV–MIR) and ultraviolet–farinfrared (UV–FIR) regions. The UV detection is due to an interband process, while the MIR/FIR detection is from free carrier absorption in the emitter/contact followed by internal photoemission over the barrier at the GaN/AlGaN interface. The UV detection, which was observed from 300 K to 4.2 K, has a threshold of 360 nm with a peak responsivity of 0.6 mA/W at 300 K. The detector shows a free carrier IR response in the 3–7 μm range up to 120 K, and an impurity response around 54 μm up to 30 K. A response in the range 7–13 μm, which is tentatively assigned to transitions from C impurities and N vacancies in the barrier region, was also observed. It should also be possible to develop a detector operating in the UV–visible–IR regions by choosing the appropriate material system. A dual-band detector design, which allows not only to measure the two components of the photocurrent generated by UV and IR radiation simultaneously but also to optimize the UV and IR responses independently, is proposed.  相似文献   

19.
The spectral emittance of polycrystalline beryllium oxide has been measured at four different angles from 0° to 75°, at a temperature of 150°C. From the spectral measurements the average band emittance in the 8–13 μm window has been calculated. The results show that the band emittance decreases from 0.44 at the angle of 0°, down to 0.23 at an angle 75° off the normal. The low band emittance is caused by a strong reststrahlen band in the wavelength region 9.2–14 μm. This reststrahlen band has been modelled by a Lorentz one-oscillator model. Experiment and calculations show that this band of low emittance increases its width towards shorter wavelengths at inclined angles and covers almost the entire upper atmospheric window 8–13 μm at the angle of 75°.  相似文献   

20.
A mid-infrared free electron laser (FEL) has been constructed for energy science in the Institute of Advanced Energy, Kyoto University. The FEL system consists of a compact S-band Linac and an undulator to generate 4–13 μm coherent mid-infrared radiations. The Linac consists of a 4.5 cell rf gun with a thermionic cathode and a 3-m traveling-wave-type accelerator tube fed by 10 MW and 20 MW rf power, respectively. We have succeeded to produce 40 MeV, 40 mA and 3 μs electron beams. Last December, the 9.2 μm spontaneous emission from the undulator generated by 29.5 MeV electron beams was observed for the first time. Further optimization parameters of both the electron beam and the optical cavity are being pursued for an FEL lasing in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号