首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A soluble and stable one-handed helical poly(substituted phenylacetylene) without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer followed by two-step polymer reactions in membrane state: (1) removing the chiral groups (desubstitution); and (2) introduction of achiral long alkyl groups at the same position as the desubstitution to enhance the solubility of the resulting one-handed helical polymer (resubstitution). The starting chiral monomer should have four characteristic substituents: (i) a chiral group bonded to an easily hydrolyzed spacer group; (ii) two hydroxyl groups; (iii) a long rigid hydrophobic spacer between the chiral group and the polymerizing group; (iv) a long achiral group near the chiral group. As spacer group a carbonate ester was selected. The two hydroxyl groups formed intramolecular hydrogen bonds stabilizing a one-handed helical structure in solution before and after the two-step polymer reactions in membrane state. The rigid long hydrophobic spacer, a phenylethynylphenyl group, enhanced the solubility of the starting polymer, and realized effective chiral induction from the chiral side groups to the main chain in the asymmetric-induced polymerization. The long alkyl group near the chiral group avoided shrinkage of the membrane and kept the reactivity of resubstitution in membrane state after removing the chiral groups. The g value (g = ([θ]/3,300)/ε) for the CD signal assigned to the main chain in the obtained final polymer was almost the same as that of the starting polymer in spite of the absence of any other chiral moieties. Moreover, since the one-handed helical structure was maintained by the intramolecular hydrogen bonds in a solution, direct observation of the one-handed helicity of the final homopolymer has been realized in CD for the solution for the first time.  相似文献   

2.
We have found an unprecedented memory of macromolecular helicity induced in an achiral sodium salt of poly(4-carboxyphenyl isocyanide) (poly-1-Na). Poly-1-Na folds into a one-handed helix through configurational isomerization around the C=N backbones by interactions with optically active amines in water. The helix remains when the optically active amines are completely removed, and further modifications of the side group to carboxy and esters can be possible without loss of the macromolecular helicity memory.  相似文献   

3.
Inspired by biological helices (e.g., DNA), artificial helical polymers have attracted intense attention. However, precise synthesis of one-handed helices from achiral materials remains a formidable challenge. Herein, a series of achiral poly(biphenyl allene)s with controlled molar mass and low dispersity were prepared and induced into one-handed helices using chiral amines and alcohols. The induced one-handed helix was simultaneously memorized, even after the chiral inducer was removed. The switchable induction processes were visible to naked eye; the achiral polymers exhibited blue emission (irradiated at 365 nm), whereas the induced one-handed helices exhibited cyan emission with clear circularly polarized luminescence. The induced helices formed stable gels in various solvents with helicity discrimination ability: the same-handed helix gels were self-healing, whereas the gels of opposite-handed helicity were self-sorted. Moreover, the induced helices could separate enantiomers via enantioselective crystallization with high efficiency and switchable enantioselectivity.  相似文献   

4.
A water-soluble amphiphilic poly(phenylacetylene) bearing the bulky aza-18-crown-6-ether pendants forms a one-handed helix induced by l- or d-amino acids and chiral amino alcohols through specific host-guest interactions in water. We now report that such an induced helical poly(phenylacetylene) with a controlled helix sense can selectively trap an achiral benzoxazole cyanine dye among various structurally similar cyanine dyes within its hydrophobic helical cavity inside the polymer in acidic water, resulting in the formation of supramolecular helical aggregates, which exhibit an induced circular dichroism (ICD) in the cyanine dye chromophore region. The supramolecular chirality induced in the cyanine aggregates could be further memorized when the template helical polymer lost its optical activity and further inverted into the opposite helicity. Thereafter, thermal racemization of the helical aggregates slowly took place.  相似文献   

5.
Cis-transoidal poly((4-carboxyphenyl)acetylene) (poly-1) is an optically inactive polymer but forms an induced one-handed helical structure upon complexation with optically active amines such as (R)-(1-(1-naphthyl)ethyl)amine ((R)-2) in DMSO. The complexes show a characteristic induced circular dichroism (ICD) in the UV-visible region of the polymer backbone. Moreover, the macromolecular helicity of poly-1 induced by (R)-2 can be "memorized" even after complete replacement of (R)-2 by various achiral amines. We now report fully detailed studies on the mechanism of the helicity induction and memory of the helical chirality of poly-1 by means of UV-visible, CD, and infrared spectroscopies. We have found that a one-handed helix is cooperatively induced on poly-1 upon the ion pair formation of the carboxy groups of poly-1 with optically active amines and that the bulkiness of the chiral amines plays a crucial role for inducing an excess of a single-handed helix. On the other hand, the free ion formation was found to be essential for the macromolecular helicity memory of poly-1 after the replacement of the chiral amine by achiral amines, since the intramolecular electrostatic repulsion between the neighboring carboxylate ions of poly-1 significantly contributes to reduce the atropisomerization process of poly-1. On the basis of the mechanism of helicity induction and the memory of the helical chirality drawn from the present studies, we succeeded in creating an almost perfect memory of the induced macromolecular helicity of poly-1 with (R)-2 by using 2-aminoethanol as an achiral chaperoning molecule to assist in maintaining the memory of helical chirality.  相似文献   

6.
We have found a simple and novel synthetic method for obtaining a chiral polymer from an achiral monomer by using a chiral catalytic system. The chirality of the polymer was caused only by a one-handed helical backbone, and the polymer had no other chiral structures in the side groups. In addition, the helical conformation was stable in solution by itself. This is the first example of helix-sense-selective polymerization of a substituted acetylene. The stability of the helicity was found to be caused by intramolecular hydrogen bonds.  相似文献   

7.
We report the dual memory of both the enantiomeric right- and left-handed helical conformations induced in a polyacetylene based on the temperature-stimulated helicity inversion of the polymer. The polyacetylene folds into a one-handed helix induced by noncovalent bonding interactions with a single enantiomeric amine. The induced helix underwent a reversible inversion of the helicity by temperature. The diastereomeric right- and left-handed helices obtained at different temperatures could be further memorized when the optically active amine was replaced by an achiral diamine, generating right- and left-handed helices of the mirror images of each other. Consequently, both enantiomeric helices can be produced with a high efficiency from dynamically diastereomeric helical polyacetylenes induced by a single enantiomer.  相似文献   

8.
Unique macromolecular helicity inversion of stereoregular, optically active poly(phenylacetylene) derivatives induced by external achiral and chiral stimuli is briefly reviewed. Stereoregular, cis-transoidal poly(phenylacetylene)s bearing an optically active substituent, such as (1R,2S)-norephedrine (poly- 1 ) and β-cyclodextrin residues (poly- 2 ), show an induced circular dichroism (ICD) in the UV-visible region of the polymer backbone in solution due to a predominantly one-handed helical conformation of the polymers. However, poly- 1 undergoes a helix-helix transition upon complexation with chiral acids having an R configuration, and the complexes exhibit a dramatic change in the ICD of poly- 1 . Poly- 2 also shows the inversion of macromolecular helicity responding to molecular and chiral recognition events that occurred at the remote cyclodextrin residues from the polymer backbone; the helicity inversion is accompanied by a visible color change. A similar helix-helix transition of poly((R)- or (S)-(4-((1-(1-naphthyl)ethyl)carbamoyl)phenyl)acetylene) is also briefly described.  相似文献   

9.
We report unique phenomena where the transition from a homochiral helix to a heterochiral helix occurs by increasing the chain length of the l-sequence. Peptides composed of the l-Leu sequences with different lengths and the achiral nona-sequence at the C-terminal side were used here. Conformation of their peptides in solution was investigated mainly by using CD analysis in various solvents, or additionally by IR and NMR. When the l-sequence has a sufficient length, a left-handed helicity was induced in the achiral sequence. Notably, the polymeric l-sequence produced a heterochiral helix that switches the helix sense around the boundary of the chiral/achiral sequence. Energy calculation demonstrated that a stable heterochiral helix favors a bending form, while a homochiral helix takes a relatively straight form. Such a bending form was suggested to be advantageous to solvent effects. The "Schellman motif" has been recognized as a local heterochiral structure in protein helices. We propose a nucleation model of a heterochiral helix through the covalent chiral domino effect derived from the Schellman motif. The present findings not only offer us novel design of a heterochiral helix but also support an elementary model for the origins of homochiral-heterochiral structures from primitive chiral/achiral sequences.  相似文献   

10.
We have reviewed our previous work regarding induction or control of a peptide helix sense through chiral stimulus to the peptide chain terminus. An optically inactive 3(10)-helix designed mainly with unusual alpha-amino acid residues was commonly employed. Such an N-terminal-free peptide generates a preferred helix sense by chiral acid molecule. A helix sense pre-directed in chiral sequence is also influenced or controlled by the chiral sign of such external molecule. Here free amide groups in the 3(10)-helical N-terminus participate in the formation of a multipoint coordinated complex. The terminal asymmetry produces the noncovalent chiral domino effect (NCDE) to influence the whole helix sense. The NCDE-mediated control of helicity provides the underlying chiral nature of protein-mimicking helical backbones: notably, chiral recognition at the terminus and modulation of helical propensity through chiral stimulus. The above items from our previous reports have been outlined and reviewed together with their significance in biopolymer science and chiral chemistry.  相似文献   

11.
A series of novel phenylacetylenes bearing optically active cyclodextrin (CyD) residues such as alpha-, beta-, and gamma-CyD and permethylated beta-CyD residues as the pendant groups was synthesized and polymerized with a rhodium catalyst to give highly cis-transoidal poly(phenylacetylene)s, poly-1alpha, poly-2beta, poly-3gamma, and poly-2beta-Me, respectively. The polymers exhibited an induced circular dichroism (CD) in the UV-visible region of the polymer backbones, resulting from the prevailing one-handed helical conformations. The Cotton effect signs were inverted in response to external chiral and achiral stimuli, such as temperature, solvent, and interactions with chiral or achiral guest molecules. The inversion of the Cotton effect signs was accompanied by a color change due to a conformational change, such as inversion of the helicity of the polymer backbones with a different twist angle of the conjugated double bonds, that was readily visible with the naked eye and could be quantified by absorption and CD spectroscopies. The dynamic helical conformations of poly-2beta showing opposite Cotton effect signs in different solvents could be further fixed by intramolecular cross-linking between the hydroxy groups of the neighboring beta-CyD units in each solvent. The cross-link between the pendant CyD units suppressed the inversion of the helicity; therefore, the cross-linked poly-2betas showed no Cotton effect inversion, although the polymer backbones were still flexible enough to alter their helical pitch with the same handedness, resulting in a color change depending on the degree of intramolecular cross-linking.  相似文献   

12.
Directed helicity control of a polyacetylene dynamic helix was achieved by hybridization with a rotaxane skeleton placed on the side chain. Rotaxane-tethering phenylacetylene monomers were synthesized in good yields by the ester end-capping of pseudorotaxanes that consisted of optically active crown ethers and sec-ammonium salts with an ethynyl benzoic acid. The monomers were polymerized with [{RhCl(nbd)}(2)] (nbd=norbornadiene) to give the corresponding polyacetylenes in high yields. Polymers with optically active wheel components that are far from the main chain show no Cotton effect, thereby indicating the formation of racemic helices. Our proposal that N-acylative neutralization of the sec-ammonium moieties of the side-chain rotaxane moieties enables asymmetric induction of a one-handed helix as the wheel components approach the main chain is strongly supported by observation of the Cotton effect around the main-chain absorption region. A polyacetylene with a side-chain rotaxane that has a shorter axle component shows a Cotton effect despite the ammonium structure of the side-chain rotaxane moiety, thereby suggesting the importance of proximity between the wheel and the main chain for the formation of a one-handed helix. Through-space chirality induction in the present systems proved to be as powerful as through-bond chirality induction for formation of a one-handed helix, as demonstrated in an experiment using non-rotaxane-based polyacetylene that had an optically active binaphthyl group. The present protocol for controlling the helical structure of polyacetylene therefore provides the basis for the rational design of one-handed helical polyacetylenes.  相似文献   

13.
N-Propargylbenzamides 1-7 were polymerized with (nbd)Rh(+)[eta(6)-C(6)H(5)B(-)(C(6)H(5))(3)] to afford polymers with moderate molecular weights (M(n) = 26,000-51,000) in good yields. The (1)H NMR spectra demonstrated that the polymers have fairly stereoregular structures (81-88 % cis). The optically active polymers, poly(1) and poly(2), were proven by their intense CD signals and large optical rotations to adopt a stable helical conformation with an excess of one-handed screw sense when heated in CHCl(3) or toluene. The sign of Cotton effect could be controlled by varying the content in the copolymers of either chiral bulky 1 and achiral nonbulky 3, or chiral nonbulky 2 and achiral bulky 7. The smaller the pendant group in the copolymerization of achiral monomers with 1, the more easily did the preferential helical sense change with the copolymer composition. However, the copolymers of chiral nonbulky 2 and achiral nonbulky 3 did not change the helical sense, irrespective of the composition. The free energy differences between the plus and minus helical states, as well as the excess free energy of the helix reversal, of those chiral-achiral random copolymers were estimated by applying a modified Ising model.  相似文献   

14.
An optically active, m‐terphenyl‐based π‐conjugated polymer bearing carboxy groups was synthesized by the copolymerization of the diethynyl monomer bearing a carboxy group with (S,S)‐2,5‐bis(2‐methylbutoxy)‐1,4‐dibromobenzene using Sonogashira reaction. The copolymer showed a weak circular dichroism (CD) in the main‐chain chromophore region due to a homo‐double helix formation with an excess helical handedness biased by the chiral alkoxy substituents through self‐association. However, upon complexation with achiral amines, such as piperidine, the CD intensity of the polymer significantly increased resulting in the formation of a greater excess one‐handed homo‐double helix via hydrogen‐bonded inclusion complexation with the achiral amines between each strand, leading to the amplification of the helicity. A preferred‐handed homo‐double helix was also induced in the polymer in the presence of nonracemic amines. The effect of the achiral and chiral amines on the homo‐double helix formation was investigated by comparing the CD spectra of the polymer to those of its model dimer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 990–999  相似文献   

15.
In this study, a series of achiral monomers and chiral monomers of different flexible spacer chains based on cholesteryl moiety were synthesized. Polymer stabilized cholesteric liquid crystal (PSCLC) cells were then created by incorporation of the polymer networks. The influence of the nature of the monomers and the spacer length of chiral monomers on the reflectance properties of PSCLC was investigated as well as the polymerization condition. The results strongly suggest that the chirality of the polymer networks plays an integral role in the observed reflection spectra, and the chiral polymer networks with chiral centers separated well from the polymer backbone induce a greater change in the bulk helix pitch, and produce the broader reflection band in these LC composites. In addition, the temperature dependence of the pitch of the composites before and after polymerization was investigated. To broaden the reflection band further, the experimental processes of thermally induced pitch variation simultaneously with a UV crosslinking reaction of the composites were presented. The morphology of the polymer network in the composites was studied by scanning electron microscopy (SEM). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Organic solid‐state semiconductor lasers are attracting ever‐increasing interest for their potential application in future photonic circuits. Despite the great progress made in recent years, an organic laser from 3D chiral structures has not been achieved. Now, the first example of an organic nano‐laser from the micro‐helix structure of an achiral molecule is presented. Highly regular micro‐helixes with left/right‐handed helicity from a distyrylbenzene derivative (HM‐DSB) were fabricated and characterized under microscope spectrometers. These chiral micro‐helixes exhibit unique photonic properties, including helicity‐dependent circularly polarized luminescence (CPL), periodic optical waveguiding, and length‐dependent amplified spontaneous emission (ASE) behavior. The successful observation of laser behavior from the organic micro‐helix extends our understanding to morphology chirality of organic photonic materials and provides a new design strategy towards chiral photonic circuits.  相似文献   

17.
Three chiral N-methylfulleropyrrolidine bisadducts were prepared, isolated, and completely resolved into each enantiomer using a chiral HPLC column, which were then converted to the corresponding optically active, cationic C(60)-bisadducts to investigate if they could act as a macromolecular helicity inducer in a poly(phenylacetylene) bearing an anionic monoethyl phosphonate pendant (poly-1) in aqueous solution. Upon complexation with the chiral C(60)-bisadducts, only the trans-3 bisadduct exhibited the characteristic induced circular dichroism (ICD) in the UV-visible region of the polymer backbone in dimethyl sulfoxide-water mixtures due to the predominantly one-handed helix formation of poly-1, while the trans-2 and cis-3 bisadducts induced almost no apparent CD in the same region. These results indicate that the helicity induction on poly-1 is highly sensitive to the structure and geometry of the cationic C(60)-bisadducts with a different distance between the separated charges.  相似文献   

18.
《Liquid crystals》1997,22(4):451-457
Novel liquid crystalline (LC) acrylate side group copolymers, which consist of nematogenic phenyl 4-methoxybenzoate acrylate monomer (A) and novel chiral binaphthyl (BN) methacrylate monomers (MB-n) have been synthesized. The copolymers prepared differ in the spacer lengths of MB-n (n 3,5,11) and in their compositions. The homopolymers of the three new chiral binaphthyl monomers MB-n were also prepared. Copolymers with a low concentration of binaphthyl monomer units (less than 16 mol%) display a cholesteric mesophase. The induced chirality in the polymers is due to atropoisomerism (C2-symmetry) of the molecules. The helical twisting powers (beta), caused by the atropoisomeric units in the synthesized copolymers, were determined, and their temperature dependencies studied. The unusually high negative temperature coefficient of beta observed above the glass transition temperature is explained in terms of conformational changes of the BN molecules in the copolymers.  相似文献   

19.
A poly(phenylacetylene) bearing a phosphonic acid monoethyl ester as the pendant forms a one-handed helical structure induced by an optically active amine, and this helicity can be "memorized"after the amine is replaced by achiral diamines. The helicity memory lasts for an extremely long time but spontaneously disappears after the achiral diamines are removed by a stronger acid, indicating the dynamic nature of the helicity memory. Here we report that such a dynamic memory could be "stored" after the pendant was converted to its methyl ester with diazomethane, resulting in the generation of a phosphorus stereogenic center with optical activity. The esterification enantioselectively proceeded through chirality transfer from the induced helical conformation or the helicity memory of the polyacetylene backbone. Although the enantioselectivity was low, the pendant chirality was significantly amplified in the polymer backbone at low temperatures, resulting in higher optical activity as an excess single-handed helix than that expected from the enantiomeric excess of the pendants.  相似文献   

20.
A novel, cistransoidal poly‐(phenylacetylene) bearing a carboxybiphenyl group as the pendant (poly‐ 1 ) was prepared by polymerization of (4′‐ethoxycarbonyl‐4‐biphenylyl)acetylene with a rhodium catalyst followed by hydrolysis of the ester groups. Upon complexation with various chiral amines and amino alcohols in dimethyl sulfoxide (DMSO), the polymer exhibited characteristic induced circular dichroism (ICD) in the UV/Vis region due to the predominantly one‐handed helix formation of the polymer backbone as well as an excess of a single‐handed, axially twisted conformation of the pendant biphenyl group. Poly‐ 1 complexed with (R)‐2‐amino‐1‐propanol showed unique time‐dependent inversion of the macromolecular helicity. Furthermore, the preferred‐handed helical conformation of poly‐ 1 induced by a chiral amine was further “memorized” after the chiral amine was replaced with achiral 2‐aminoethanol or n‐butylamine in DMSO. In sharp contrast to the previously reported memory in poly((4‐carboxyphenyl)acetylene), the present helicity memory of poly‐ 1 was accompanied by memory of the twisted biphenyl chirality in the pendants. Unprecedentedly, the helicity memory of poly‐ 1 with achiral 2‐aminoethanol was found to occur simultaneously with inversion of the axial chirality of the biphenyl groups followed by memory of the inverted biphenyl chirality, thus showing a significant change in the CD spectral pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号