首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
A novel, cistransoidal poly‐(phenylacetylene) bearing a carboxybiphenyl group as the pendant (poly‐ 1 ) was prepared by polymerization of (4′‐ethoxycarbonyl‐4‐biphenylyl)acetylene with a rhodium catalyst followed by hydrolysis of the ester groups. Upon complexation with various chiral amines and amino alcohols in dimethyl sulfoxide (DMSO), the polymer exhibited characteristic induced circular dichroism (ICD) in the UV/Vis region due to the predominantly one‐handed helix formation of the polymer backbone as well as an excess of a single‐handed, axially twisted conformation of the pendant biphenyl group. Poly‐ 1 complexed with (R)‐2‐amino‐1‐propanol showed unique time‐dependent inversion of the macromolecular helicity. Furthermore, the preferred‐handed helical conformation of poly‐ 1 induced by a chiral amine was further “memorized” after the chiral amine was replaced with achiral 2‐aminoethanol or n‐butylamine in DMSO. In sharp contrast to the previously reported memory in poly((4‐carboxyphenyl)acetylene), the present helicity memory of poly‐ 1 was accompanied by memory of the twisted biphenyl chirality in the pendants. Unprecedentedly, the helicity memory of poly‐ 1 with achiral 2‐aminoethanol was found to occur simultaneously with inversion of the axial chirality of the biphenyl groups followed by memory of the inverted biphenyl chirality, thus showing a significant change in the CD spectral pattern.  相似文献   

2.
Isopropyl‐substituted tri(ethylene glycol) is used as a chiral side chain of N‐substituted poly(p‐benzamide) in order to increase the difference of stability between the right‐ and left‐handed helical structures of the polymer. The target polymer is synthesized by the chain‐growth condensation polymerization of the corresponding monomer with an initiator using lithium 1,1,1,3,3,3‐hexamethyldisilazide as a base. A circular dichroism (CD) study of the polymer reveals that the CD signal is due to an excess of a thermodynamically controlled right‐handed helical structure of the polymer, and that the replacement of the methyl group with a bulkier isopropyl group at the side chain of poly(p‐benzamide) increases the abundance of right‐handed helical structure in chloroform. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1623–1628  相似文献   

3.
A novel 2,6‐anthrylene‐linked bis(m‐terphenylcarboxylic acid) strand ( 1 ) self‐associates into a racemic double‐helix. In the presence of chiral mono‐ and diamines, either a right‐ or left‐handed double‐helix was predominantly induced by chiral amines sandwiched between the carboxylic acid strands with accompanying stacking of the two prochiral anthracene linker units in an enantiotopic face‐selective way, as revealed by circular dichroism and NMR spectral analyses. The photoirradiation of the optically active double helices complexed with chiral amines proceeded in a diastereo‐ (anti or syn) and enantiodifferentiating way to afford the chiral anti‐photodimer with up to 98 % enantiomeric excess when (R)‐phenylethylamine was used as a chiral double‐helix inducer. The resulting optically active anti‐photodimer can recognize the chirality of amines and diastereoselectively complex with chiral amines.  相似文献   

4.
The asymmetric polymerization of 4′‐isocyanatobenzo‐18‐crown‐6 with the lithium amide of (S)‐(2‐methoxymethyl)pyrrolidine successfully proceeded to afford end‐functionalized poly(4′‐isocyanatobenzo‐18‐crown‐6) with (S)‐(2‐methoxymethyl)pyrrolidine (polymer 2 ). In the circular dichroism (CD) spectrum of 2 , a clear positive Cotton effect was observed in the range of 240–350 nm corresponding to the absorption of the polymer backbone, indicating that 2 partially formed a one‐handed helical structure, which was preserved by the chirality of (S)‐(2‐methoxymethyl)pyrrolidine bonding to the terminal end in 2 . In the titration experiments for the CD intensity of 2 in the presence of D ‐ and L ‐Phe·HClO4 (where Phe is phenylalanine), a small but remarkable difference was observed in the amount of the chiral guest needed for saturation of the CD intensity and in the saturated CD intensity, indicating that the extremely stable, one‐handed helical part should exist in the main chain of 2 , which was not inverted even when the unfavorable chiral guest for the predominant helical sense, L ‐Phe·HClO4, was added. In addition, helical polymer 2 exhibited a chiral discrimination ability toward racemic guests; that is, the guests were extracted from the aqueous phase into the organic phase with enantiomeric excess. The driving force of the chiral discrimination ability of 2 should certainly be attributed to the one‐handed helical structure in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 325–334, 2006  相似文献   

5.
This article details the enantioselective catalytic performance of crosslinked, polymer immobilized, Ir‐based, chiral complexes for transfer hydrogenation of cyclic imines to chiral amines. Polymerization of the achiral vinyl monomer, divinylbenzene, and a polymerizable chiral 1,2‐diamine monosulfonamide ligand followed by complexation with [IrCl2Cp*]2 affords the crosslinked polymeric chiral complex, which can be successfully applied to asymmetric transfer hydrogenation of cyclic imines. Polymeric catalysts prepared from amphiphilic achiral monomers have high catalytic activity in the reaction and can be used both in organic solvents and water to give chiral cyclic amines with a high level of enantioselectivity (up to 98% ee). The asymmetric reaction allows for reuse of the heterogeneous catalyst without any loss in activity or enantioselectivity over several runs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3037–3044  相似文献   

6.
A poly(phenylacetylene) bearing a polycarbohydrate ionophore as a graft chain (copolymer 4 ) was synthesized by the copolymerization of end‐functionalized (1→6)‐2,5‐anhydro‐3,4‐di‐O‐ethyl‐D ‐glucitol with a 4‐ethynylbenzoyl group (macromonomer 2 ) with phenylacetylene. Copolymer 4 showed a split‐type circular dichroism (CD) in the long absorption region of the conjugated polymer backbone (280–500 nm), and the CD pattern varied in response to external stimuli, such as the solvents and temperature. This suggested that 4 had a predominantly one‐handed helical conformation in the polyacetylene backbone. The CD pattern of 4 was completely inverted by the formation of a complex between the macromolecular ionophore units and the selected metal cations, that is, Ba2+, Pb2+, Sr2+, Na+, and Li+. This suggested that copolymer 4 underwent a helix–helix transition through the host–guest complexation with achiral inorganic metal cations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5855–5863, 2005  相似文献   

7.
Four novel chiral phenylacetylenes having an L ‐amino alcohol residue and two hydroxymethyl groups were synthesized and polymerized by an achiral catalyst ((nbd)Rh+6‐(C6H5)B?(C6H5)3]) or a chiral catalytic system ([Rh(nbd)Cl]2/(S)‐ or (R)‐phenylethylamine ((S)‐ or (R)‐PEA)). The two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects at wavelengths around 430 nm. This observation indicated that they had an excess of one‐handed helical backbones. Positive and negative Cotton effects were observed only for the polymers having an L ‐valinol residue produced by using (R)‐ and (S)‐PEA as a cocatalyst, respectively, although the monomer had the same chirality. Even when the achiral catalyst was used, the two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects despite the long distance between the chiral groups and the main chain. We have found the first example of a new type of chiral monomer, that is, a chiral phenylacetylene monomer having an L ‐amino alcohol residue and two hydroxy groups that was suitable for both modes of asymmetric polymerization, that is, the helix‐sense‐selective polymerization ( HSSP ) with the chiral catalytic system and the asymmetric‐induced polymerization ( AIP ) with the achiral catalyst. The other two monomers having L ‐alaninol and L ‐tyrosinol were found to be unsuitable to neither HSSP nor AIP because of their polymers' low solubility. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
We herein report a “grafting from” strategy to immobilize optically active helical poly(phenyl isocyanide)s onto graphene oxide (GO) nanosheets. After covalently bounding alkyne‐Pd(II) initiator onto GO nanosheets, the designed GO/polymer composites P1 @GO and P1 ‐b‐ P2 @GO featuring single‐handed helical poly(phenyl isocyanide)s growing from GO nanosheets were prepared by sequential addition of the chiral and achiral isocyanide monomers. Post‐synthetic hydrolysis rendered P1 ‐b‐ P3 @GO to improve the hydrophilicity. The successful covalent bonding of poly(phenyl isocyanide)s chains onto GO nanosheets was certified by several cross evidences including scan emission microscopy, atomic force microscopy, Raman spectroscopy, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. Circular dichroism spectra proved that the chiral information was introduced through the grafted single‐handed helical polymer chains successfully. In addition, the resulting GO/polymer composites were explored as a chiral additive to induce enantioselective crystallization of racemic organic molecules. Preferential formation of rod‐like L‐alanine crystals was induced by composites bearing right‐handed helical poly(phenyl isocyanide)s. The enantiomeric excess value of the induced crystals reached 76%, displaying the potential in future applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2092–2103  相似文献   

9.
Novel chiral acetylene monomers containing carbazole, 2‐ethynyl‐9‐[(S)‐2‐methylbutoxycarbonyl]carbazole ( 1 ), 3‐ethynyl‐9‐[(S)‐2‐methylbutoxycarbonyl]carbazole ( 2 ), 2‐ethynyl‐9‐[(S)‐2‐methylbutyl]carbazole ( 3 ), and 2‐ethynyl‐9‐[(S)‐4‐methylhexyl]carbazole ( 4 ) were synthesized and polymerized with [(nbd)RhCl]2? Et3N. The corresponding polyacetylenes with number‐average molecular weights ranging from 68,700 to 310,000 were obtained in good yields. Poly( 1 ) exhibited a large specific rotation and an intense Cotton effect in toluene, indicating that it formed a helix with predominantly one‐handed screw sense, while the other three polymers showed no evidence for taking a helical structure. Poly( 1 ) largely decreased the CD intensity upon heating from ?10 to 60 °C. Poly( 1 ) showed a Cotton effect in film state in a manner similar to solution state. No chiral amplification was observed in the copolymerization of 1 with achiral 2‐ethynyl‐9‐tert‐butoxycarbonylcarbazole ( 5 ). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4450–4458, 2007  相似文献   

10.
Cis-transoidal poly((4-carboxyphenyl)acetylene) (poly-1) is an optically inactive polymer but forms an induced one-handed helical structure upon complexation with optically active amines such as (R)-(1-(1-naphthyl)ethyl)amine ((R)-2) in DMSO. The complexes show a characteristic induced circular dichroism (ICD) in the UV-visible region of the polymer backbone. Moreover, the macromolecular helicity of poly-1 induced by (R)-2 can be "memorized" even after complete replacement of (R)-2 by various achiral amines. We now report fully detailed studies on the mechanism of the helicity induction and memory of the helical chirality of poly-1 by means of UV-visible, CD, and infrared spectroscopies. We have found that a one-handed helix is cooperatively induced on poly-1 upon the ion pair formation of the carboxy groups of poly-1 with optically active amines and that the bulkiness of the chiral amines plays a crucial role for inducing an excess of a single-handed helix. On the other hand, the free ion formation was found to be essential for the macromolecular helicity memory of poly-1 after the replacement of the chiral amine by achiral amines, since the intramolecular electrostatic repulsion between the neighboring carboxylate ions of poly-1 significantly contributes to reduce the atropisomerization process of poly-1. On the basis of the mechanism of helicity induction and the memory of the helical chirality drawn from the present studies, we succeeded in creating an almost perfect memory of the induced macromolecular helicity of poly-1 with (R)-2 by using 2-aminoethanol as an achiral chaperoning molecule to assist in maintaining the memory of helical chirality.  相似文献   

11.
Stereoregular cis‐transoidal poly(phenylacetylene) bearing a phosphonic acid monoethyl ester as the pendant group (poly‐ 1 ‐H) was found to form a preferred‐handed helix upon complexation with various optically active pyrrolidines and piperazines in dilute dimethyl sulfoxide and water, and the complexes exhibited characteristic induced circular dichroisms (ICDs) in the UV‐vis region of the polymer backbone. The Cotton effect signs in water reflect the absolute configuration of the pyrrolidines. The sodium salt of poly‐ 1 ‐H (poly‐ 1 ‐Na) and poly‐ 1 ‐H in the presence of optically active amines formed lyotropic nematic and cholesteric liquid crystalline phases in concentrated water solutions, respectively, indicating the rigid‐rod characteristic of the polymer main chain regardless of the lack of a single‐handed helix, as evidenced by the long persistence length of about 18 nm before and after the preferred‐handed helicity induction in the polymer. X‐ray diffraction of the oriented films of the nematic and cholesteric liquid crystalline polymers exhibited almost the same diffraction pattern, suggesting that both polymers have the same helical structure; dynamically racemic and one‐handed helices, respectively. On the basis of the X‐ray analysis, a possible helical structure of poly‐ 1 is proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1383–1390, 2010  相似文献   

12.
A stereoregular poly(phenylacetylene) bearing the bulky aza‐18‐crown‐6 ether as the pendant (poly‐ 1 ) formed a predominantly one‐handed helical conformation upon complexation with various chiral compounds, such as amino acids, peptides, aminosugars, amines, and amino alcohols in water. The complexes exhibited an induced circular dichroism (ICD) in the UV–visible region of the polymer main chain. Therefore, poly‐ 1 can be used as a novel probe for determining the chirality of chiral compounds in water. The assay of 19 common free L ‐amino acids gave the same ICD sign at 0 °C except for L ‐phenylalanine. The effects of pH, temperature, guest concentration, and organic solvent content on the ICD during the complexation of poly‐ 1 with chiral compounds were also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1004–1013, 2003  相似文献   

13.
The self‐assembly behavior of an achiral perylene bisimide (PBI) organogelator that bears two 3,4,5‐tridodecyloxybenzoylaminoethyl substituents at the imide positions has been investigated in chiral solvents (R)‐ and (S)‐limonene in great detail by circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). CD spectroscopic studies on dilute solutions revealed a preferential population of one‐handed helical assemblies in chiral solvent with an enantiomeric excess close to 100 %, whereas AFM images of more than 100 nanofibers of the organogel obtained from more concentrated solutions were found to consist of both handed helices with an enantiomeric excess of only 20 %. This discrepancy is attributed to the fast gelation process at high dye concentration that evidently proceeds through non‐equilibrated nuclei in a kinetic rather than thermodynamic self‐assembly process. Under these conditions the chiral induction from the homochiral solvent may not be adequate in effectively populating only one‐handed helices.  相似文献   

14.
A new chiral half‐titanocene complex, [CpTiCl2(O‐(S)?2‐Bu)], is synthesized and characterized by 1H and 13C NMR spectroscopy. This complex is employed for the coordination polymerization of n‐butyl and n‐hexyl‐ isocyanate leading to chiral polymers, as revealed by their CD spectra. Only the left‐handed helix is produced, due to the chiral (S)?2‐butoxy group, which is bound to the polymer chain end. The polymerization of 3‐(triethoxysilyl)propyl isocyanate produces less soluble polymers. On the other hand, phenyl isocyanate reacts slowly with the complex leading quantitatively and selectively to triphenyl isocyanurate. 2‐Ethylhexyl isocyanate is slowly and selectively cyclotrimerized in the presence of the half‐titanocene complex. However, a statistical copolymer of 2‐ethylhexyl isocyanate and hexyl isocyanate is produced. The reaction of benzyl isocyanate with the complex leads to a mixture of low molecular weight polymer and cyclotrimer. The polymers are characterized using SEC, NMR, and CD spectroscopy and their thermal properties are investigated by TGA/DSC analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2141–2151  相似文献   

15.
The achiral sodium salt of poly(4‐carboxyphenyl isocyanide) (poly‐ 1 –Na) folds into a one‐handed helix induced by optically active amines in water. The induced helicity remains when the optically active amines are completely removed, and further modification of the side groups to amide residues is possible without loss of memory of macromolecular helicity. Although the helical poly‐ 1 –Na loses its chiral memory at high temperature, helical polyisocyanides modified with achiral primary amines, which no longer have any chiral components, keep their memory perfectly even at 100 °C in N,N‐dimethylformamide in some cases and exhibit cholesteric liquid‐crystalline phases, thus providing a robust scaffold with heat resistance to which a variety of functional groups can be introduced.  相似文献   

16.
A novel chiral (S)‐BINAM‐based fluorescent polymer sensor was designed and synthesized by the polymerization of 4,4′‐((2,5‐dibutoxy‐1,4‐phenylene)bis(ethyne‐2,1‐diyl))‐dibenzaldehyde ( M‐1 ) with (S)‐2,2′‐binaphthyldiamine (S‐BINAM, M‐2 ) via Schiff's base formation. The resulting helical chiral polymer sensor exhibited remarkable “turn‐on” bright blue fluorescence color upon the addition of trivalent metal ions under a commercially available UV lamp; this change can be clearly observed by the naked eye for direct visual discrimination at low concentration. More importantly, the addition of trivalent metal cations can lead to a most pronounced change of CD spectra of the chiral polymer indicating this kind chiral sensor can also be used as a sole probe for selective recognition of trivalent metal cations based on CD spectra. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4070–4075  相似文献   

17.
The asymmetric induction leading to a one‐handed helix was investigated in the anionic and radical copolymerization of triphenylmethyl methacrylate (TrMA) and (S)‐2‐isopropenyl‐4‐phenyl‐2‐oxazoline ((S)‐IPO), and highly isotactic copolymers with a reasonable optical activity were obtained. In the anionic copolymerization, the optical activity of the obtained copolymers depended on the polarity of solvents, and a highly optically active copolymer was produced in the copolymerization in toluene. The chiral oxazoline monomer functioned not only as a comonomer but also as a chiral ligand to endow the polymer with large negative optical rotation in the copolymerization with TrMA. The copolymers with small positive optical rotation were obtained in THF, indicating that IPO unit may work only as the chiral monomer that dictates the helical sense via copolymerization with TrMA. The isotacticity of the obtained copolymers depended on the contents of TrMA units in the copolymers, but was almost independent of the solvent for copolymerization. In the radical copolymerization, the obtained copolymers exhibited small optical activities. It seemed that the chiral monomer cannot induce one‐handed helical structure of TrMA sequences even if the sequences probably have a high isotacticity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 441–447  相似文献   

18.
Random copolymers of poly(p‐benzamide)s having a methyl‐substituted tri(ethylene glycol) unit as a chiral side chain and a nonsubstituted tri(ethylene glycol) or branching alkyl unit as an achiral side chain were synthesized by copolymerization of N‐substituted 4‐aminobenzoic acid ester monomers with a base in the presence of an initiator. Copolymerizations of the chiral (S)‐monomer with N‐tri(ethylene glycol) achiral monomer and with the racemic monomer were carried out by the addition of a mixture of two monomers and an initiator to a solution of a base all at once, affording the corresponding random copolymers. On the other hand, random copolymerization of the chiral monomer with monomer having an achiral branching alkyl side chain required dropwise addition of the achiral monomer to a mixture of the chiral monomer, the initiator, and the base. These copolymers formed helical structures, but analysis of the CD spectra indicated the absence of cooperativity between the monomer units along the copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The β‐diketonate‐based achiral polymer P‐1 could be synthesized by the polymerization of 3,7‐dibromo‐2,8‐dimethoxy‐5,5‐dioctyl‐5H‐dibenzo[b,d]silole ( M1 ) with (Z)?1,3‐bis(4‐ethynylphenyl)?3‐hydroxyprop‐en‐1‐one ( M2 ) via typical Sonogashira coupling reaction. The β‐diketonate unit in the main chain backbone of P‐1 can further coordinate with Eu(TTA)x [TTA? = 4,4,4‐trifluoro‐1‐(thiophen‐2‐yl)butane‐1,3‐dionate anion, X = 1, 2, 3] to afford corresponding Eu(III)‐containing polymer complexes. The resulting achiral polymer complex P‐2 (X = 2) can exhibit strong circular dichroism (CD) response toward both N‐Boc‐l and d‐ proline enantiomers. The CD signal was preliminarily attributed to coordination induction between chiral N‐Boc‐proline and the Eu(III) complex moiety. The linear regression analysis of CD sensing shows a good agreement between the magnitude of molar ellipticity and concentration of chiral N‐Boc‐l or d‐ proline, which indicates this kind Eu(III)‐containing achiral polymer complex can be used as a chiral probe for enantioselective recognition of N‐Boc‐l or d‐ proline enantiomers based on Cotton effect of CD spectra. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3080–3086  相似文献   

20.
Terminally blocked, homo‐peptide amides of (R,R)‐1‐amino‐2,3‐diphenylcyclopropane‐1‐carboxylic acid (c3diPhe), a chiral member of the family of Cα‐tetrasubstituted α‐amino acids, from the dimer to the tetramer, and diastereomeric co‐oligopeptides of (R,R)‐ or (S,S)‐c3diPhe with (S)‐alanine residues to the trimer level were prepared in solution and fully characterized. The synthetic effort was extended to terminally protected co‐oligopeptide esters to the hexamer, where c3diPhe residues are combined with achiral α‐aminoisobutyric acid residues. The preferred conformations of the peptides were assessed in solution by FT‐IR absorption, NMR, and CD techniques, and for seven oligomers in the crystal state (by X‐ray diffraction) as well. This study clearly indicates that c3diPhe, a sterically demanding cyclopropane analogue of phenylalanine, tends to fold peptides into β‐turn and 310‐helix conformations. However, when c3diPhe is in combination with other chiral residues, the conformation preferred by the resulting peptides is also dictated by the chiral sequence of the amino acid building blocks. The (S,S)‐enantiomer of this α‐amino acid, unusually lacking asymmetry in the main chain, strongly favors the left‐handedness of the turn/helical peptides formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号