首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We derive a new ( 2 + 1)‐dimensional Korteweg–de Vries 4 (KdV4) equation by using the recursion operator of the KdV equation. This study shows that the new KdV4 equation possess multiple soliton solutions the same as the multiple soliton solutions of the KdV hierarchy, but differ only in the dispersion relations. We also derive other traveling wave solutions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The generalized tanh-coth method is used to construct periodic and soliton solutions for a new integrable system, which has been derived from an integrable sixth-order nonlinear wave equation (KdV6). The system is formed by two equations. One of the equations may be considered as a Korteweg-de Vries equation with a source and the second equation is a third-order linear differential equation.  相似文献   

3.
This work aims to study the negative-order KdV equation in (3+1)-dimensions which is developed via using the recursion operator of the KdV equation by employing the three-wave methods. As a consequence, a variety of novel multiwave solutions with several arbitrary parameters to the considered equation are presented. Moreover, selecting particular values for the parameters, some graphs are plotted to show the spatial structures and dynamics of the resulting solutions. These results enrich the variety of the dynamics in the field of nonlinear waves.  相似文献   

4.
In this short letter, new exact solutions including kink solutions, soliton-like solutions and periodic form solutions for a combined version of the potential KdV equation and the Schwarzian KdV equation are obtained using the generalized Riccati equation mapping method.  相似文献   

5.
该文指出:利用Darboux变换不但可以非常简洁地得到文献[1]关于KdV方程单孤子解和双孤子解,而且便于讨论KdV方程的任意孤子解的性质.通过对KdV方程三孤子解的重点讨论,以及对KdV方程多孤子解的解析分析,得到了关于KdV方程任意阶孤子解的一些非常有意义的普遍结果.这些结果对于人们深入了解孤子相互作用规律具有重要的现实意义.  相似文献   

6.
In this paper, the nonlocal symmetries and exact interaction solutions of the variable coefficient Korteweg–de Vries (KdV) equation are studied. With the help of pseudo-potential, we construct the high order nonlocal symmetries of the time-dependent coefficient KdV equation for the first time. In order to construct the new exact interaction solutions, two auxiliary variables are introduced, which can transform nonlocal symmetries into Lie point symmetries. Furthermore, using the Lie point symmetries of the closed system, some exact interaction solutions are obtained. For some interesting solutions, such as the soliton–cnoidal wave solutions are discussed in detail, and the corresponding 2D and 3D figures are given to illustrate their dynamic behavior.  相似文献   

7.
The goal of this short note is to provide another kind soliton solutions with Hirota form, which is different from what Wazwaz obtained in [A.M. Wazwaz, The integrable KdV6 equations: Multiple soliton solutions and multiple singular soliton solutions, Appl. Math. Comput. 204 (2008) 963-972]. Meanwhile we newly construct the MKdV6 equation and derive a Miura transformation between KdV6 equation and MKdV6 equation.  相似文献   

8.
Using Hirota technique, a Bäcklund transformation in bilinear form is obtained for the KdV6 equation. Furthermore, we present a modified Bäcklund transformation by a dependent variable transformation, it is shown that a new representation of N-soliton solution and some novel solutions to the KdV6 equation are derived by performing an appropriate limiting procedure on the known soliton solutions.  相似文献   

9.
In this work we formally derive the dark soliton solutions for the combined potential KdV and Schwarzian KdV equations. The combined KdV and Schwarzian KdV equations with time-dependent coefficients and forcing term are then investigated to obtain dark soliton solutions. The solitary wave ansatz is used to carry out the analysis for both models.  相似文献   

10.
In this paper, the Cole-Hopf transform is used to construct exact solutions to a generalization of both the seventh-order Lax KdV equation (Lax KdV7) and the seventh-order Sawada-Kotera-Ito KdV equation (Sawada-Kotera-Ito KdV7 ) with forcing term.  相似文献   

11.
In this work, we develop the negative‐order modified Korteweg–de Vries (nMKdV) equation. By means of the recursion operator of the modified KdV equation, we derive negative order forms, one for the focusing branch and the other for the defocusing form. Using the Weiss–Tabor–Carnevale method and Kruskal's simplification, we prove the Painlevé integrability of the nMKdV equations. We derive multiple soliton solutions for the first form and multiple singular soliton solutions for the second form. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this work we study a hierarchy of KdV6 equation. We derive the KdV6 hierarchy by using the Lenard operators pair. We show that these equations give multiple soliton solutions with distinct dispersion relations.  相似文献   

13.
We study the generalized KdV equation having time dependent variable coefficients of the damping and dispersion from the Lie group-theoretic point of view. Lie group classification with respect to the time dependent coefficients is performed. The optimal system of one-dimensional subalgebras of the Lie symmetry algebras are obtained. These subalgebras are then used to construct a number of similarity reductions and exact group-invariant solutions, including soliton solutions, for some special forms of the equations.  相似文献   

14.
In this work we study the KdV equation and the Gardner equation with time-dependent coefficients and forcing term for each equation. A generalized wave transformation is used to convert each equation to a homogeneous equation. The soliton ansatz will be applied to the homogeneous equations to obtain soliton solutions.  相似文献   

15.
Korteweg-de Vries (KdV)-type equations can describe some physical phenomena in fluids, nonlinear optics, quantum mechanics, plasmas, etc. In this paper, with the aid of symbolic computation, the integrable sixth-order KdV equation is investigated. Darboux transformation (DT) with an arbitrary parameter is presented. Explicit solutions are derived with the DT. Relevant properties are graphically illustrated, which might be helpful to understand some physical processes in fluids, plasmas, optics and quantum mechanics.  相似文献   

16.
We present a new formulation for the quantum evolution equation of KdV type. It is shown explicitly that a generalization of the usual recursion operator is possible, even when we follow the rules of quantization and assume that the nonlinear field variables do not commute. We also demonstrate that this recursion operator generates in a recursive way an infinite number of Hamiltonians commuting with each other, thus giving a basis for the complete integrability of the quantum mechanical evolution of the field. It is discovered that the reason why the recursion operator for the quantum KdV was not discovered earlier lies in the fact that this recursion operator is more closely connected to the general theory of the KP than to that of the KdV.  相似文献   

17.
Exact solutions of KdV equation with time-dependent coefficients   总被引:1,自引:0,他引:1  
In this paper, we study the Korteweg-de Vries (KdV) equation having time dependent coefficients from the Lie symmetry point of view. We obtain Lie point symmetries admitted by the equation for various forms for the time-dependent coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary coefficients. Subsequently, the 1-soliton solution is obtained by the aid of solitary wave ansatz method. It is observed that the soliton solution will exist provided that these time-dependent coefficients are all Riemann integrable.  相似文献   

18.
In this paper, the homotopy perturbation method is directly applied to derive approximate solutions of the fractional KdV equation. The results reveal that the proposed method is very effective and simple for solving approximate solutions of fractional differential equations.  相似文献   

19.
In this work, the integrable bidirectional sixth-order Sawada-Kotera equation is examined. The equation considered is a KdV6 equation that was derived from the fifth order Sawada-Kotera equation. Multiple soliton solutions and multiple singular soliton solutions are formally derived for this equation. The Cole-Hopf transformation method combined with the Hirota’s bilinear method are used to determine the two sets of solutions, where each set has a distinct structure.  相似文献   

20.
In this paper, a new method to solve space–time‐dependent non‐linear equations is proposed. After considering the variable coefficient of a non‐linear equation as a new dependent variable, some special types of space–time‐dependent equations can be solved from corresponding space–time‐independent equations by using the general classical Lie approach. The rich soliton solutions of space–time‐dependent KdV equation and mKdV equation are given with the help of the approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号