首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An RP LC‐ESI‐MS/MS method for the determination of the migration of 16 primary phthalic acid esters from plastic samples has been developed using distilled water, 3% acetic acid, 10% alcohol, and olive oil as food simulants. Detection limits were 1.6–18.5 μg/kg in distilled water, 1.4–17.3 μg/kg in 3% acetic acid, 1.4–19.2 μg/kg in 10% alcohol, and 31.9–390.8 μg/kg in olive oil. The RSDs were in the range of 0.07–11.28%. The real plastic products inspection showed that only few analyzed samples were phthalates contaminated. Bis‐2‐ethylhexyl ester and dibutyl phthalate were the common items migrated from the plastic products into food and feeds, but the migration concentrations were far below the limits set by European Union (1.5 mg/kg for bis‐2‐ethylhexyl ester and 0.3 mg/kg for dibutyl phthalate).  相似文献   

2.
Liquid‐phase microextraction based on gemini‐based supramolecular solvent was successfully applied as a preconcentration step before gas chromatography with mass spectrometry. To eliminate the interferences of gemini surfactant, the analytes were back‐extracted into an immiscible organic solvent in the presence of ultrasonic sound waves. Three phthalate esters (di‐n‐butyl‐, butylbenzyl‐, bis(2‐ethylhexyl)‐, and di‐n‐octyl phthalatic esters) were used as target analytes. The effective parameters on extraction efficiency of the target analytes (i.e., the amount of surfactant and volume of propanol as major components making up the supramolecular solvent, ionic strength, hexane volume, and ultrasound time) were investigated and optimized by a one‐variable‐at‐a‐time method. Under the optimum conditions, the preconcentration factors of the analytes were in the range of 95–182. The linear dynamic range of 0.05–200.00 μg/L with a correlation of determination of (R 2) ≥ 0.9935 was obtained. The proposed method had an excellent limit of detection (S/N = 3) of 0.01 for di‐n‐octyl and 0.02 μg/L for butylbenzyl‐ and di‐n‐butyl‐phthalatic ester. Good relative recoveries in the range of 85.7–105.2% guaranteed the accuracy of the amount of phthalates distinguished in the nonspiked samples.  相似文献   

3.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

4.
Chitosan‐grafted polyaniline was synthesized and applied as a sorbent for the preconcentration of phthalate esters in dispersive solid‐phase extraction. By coupling dispersive solid‐phase extraction with high‐performance liquid chromatography and response surface methodology (central composite design), a reliable, sensitive, and cost‐effective method for simultaneous determination of phthalate esters including dimethyl phthalate, di‐n‐butyl phthalate, and di(2‐ethylhexyl)phthalate was developed. The morphology of sorbent had been studied by scanning electron microscopy and its chemical structure confirmed by Fourier transform infrared spectroscopy. Under optimum condition, good linearity was observed in the range of 5.0–5000.0 ng/mL. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were 0.1–0.3 and 0.3–1 ng/mL, respectively. The relative standard deviations were less than 8.8%. Finally, this procedure was employed for extraction of trace amounts of phthalic acid esters in milk samples, the relative recoveries ranged from 82 to 103%.  相似文献   

5.
In this work, core‐shell structured magnetic mesoporous carbon nanospheres were fabricated from the carbonization of metal‐polyphenol coordination polymer‐coated Fe3O4 nanoparticles. The preparation method is simple, fast, versatile, and easy to scale up. Magnetic mesoporous carbon nanospheres exhibit a high specific surface area, high superparamagnetism, and high adsorption efficiencies for phthalates. Four phthalates were extracted from aqueous solutions by using magnetic mesoporous carbon nanospheres via magnetic solid phase extraction. Subsequent analysis was performed by using high‐performance liquid chromatography with ultraviolet detection. The analytical method has good linearity in the concentration range of 1–200 ng/mL for diethyl phthalate, diisobutyl phthalate, and dicyclohexyl phthalate, and 3–200 ng/mL for dipropyl phthalate. The limits of detection were in the range of 0.10–0.62 ng/mL. Compared with previous methods, this method has a lower detection limit, wider linearity range, and faster adsorption and desorption rates. The results indicate that magnetic mesoporous carbon nanospheres are suitable for the enrichment of hydrophobic substances from aqueous solutions.  相似文献   

6.
Phthalate esters are easily released from plastics materials and migrate into the soil and water environment, causing serious pollution and posing a great threat to the health of human beings. A novel temperature‐sensitive extractant combined with liquid–liquid microextraction was developed to preconcentrate three phthalates in the water environment. To optimize the extraction efficiency for the three phthalate esters, various parameters, including polymer molecular weight, salt type, salt addition, adsorption time, desorption solvent, desorption volume, and desorption time have been studied. Under optimal conditions, limits of detection and limits of quantification were in the range of 0.007–0.120 and 0.021–0.350 µg/L, respectively. Linearities varied in the range of 5–1000 µg/L, with the correlation coefficients of 0.9867–0.9997. The preconcentration factors were in the range of 25–75. The relative recoveries of the three phthalate esters were in the range of 82.2–105.6% at the spiked levels. The relative standard deviations were in the range of 0.7–9.2% based on triplicate measurements. The results indicate that the temperature‐sensitive material is a good extractant for phthalate esters in water samples.  相似文献   

7.
A gas chromatography–mass spectrometry assay was developed and validated for the simultaneous determination of phthalates and adipates in human serum. The phthalates and adipates studied were dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzylbutyl phthalate, di‐2‐ethylhexyl phthalate, di‐n‐octyl phthalate, diethyl adipate, dibutyl adipate, diisobutyl adipate, bis(2‐butoxyethyl) adipate and di‐2‐ethylhexyl adipate, with diisooctyl phthalate as internal standard. The extraction and cleaning up procedure was carried out with solid‐phase extraction cartridges containing dimethyl butylamine groups, which showed extraction efficiencies over 88% for each analyte and the internal standard. The calibration curves obtained were linear with correlation coefficients greater than 0.98. For all analytes, the assay gave CV% values for intra‐day precision from 4.9 to 13.3% and mean accuracy values from 91.4 to 108.4%, while inter‐day precision was 5.2–13.4% and mean accuracy 91.0–110.2%. The limits of detection for the assay of phthalates and adipates were in the range 0.7–4.5 ng/mL. The method is simple, sensitive and accurate, and allows for simultaneous determination of nanogram levels of phthalates and adipates in human serum. It was successfully applied to an investigation on the level of phthalates and adipates in a non‐occupationally exposed population.  相似文献   

8.
An ultrasound‐assisted magnetic solid‐phase extraction procedure with chloromethylated polystyrene‐coated Fe3O4 nanospheres as magnetic adsorbents has been developed to determine eight phthalate esters (bis(4‐methyl‐2‐pentyl) phthalate, dipentyl phthalate, dihexyl phthalate, benzyl butyl phthalate, bis(2‐butoxyethyl) phthalate, dicyclohexyl phthalate, di‐n‐octyl phthalate, and dinonyl phthalate) simultaneously in beverage samples, in combination with gas chromatography coupled to tandem mass spectrometry for the first time. Several factors related to magnetic solid‐phase extraction efficiencies, such as amount of adsorbent, extracting time, ionic strength, and desorption conditions were investigated. The enrichment factors of the method for the eight analytes were over 2482. A good linearity was observed in the range of 10–500 ng/L for bis(2‐butoxyethyl) phthalate and 2–500 ng/L for the other phthalate esters with correlation coefficients ranging from 0.9980 to 0.9998. The limits of detection and quantification for the eight phthalate esters were in the range of 0.20–2.90 and 0.67–9.67 ng/L, respectively. The mean recoveries at three spiked levels were 75.8–117.7%, the coefficients of variations were <11.6%. The proposed method was demonstrated to be a simple and efficient technique for the trace analysis of the phthalate esters in beverage samples.  相似文献   

9.
A novel polystyrene/pyridine composite nanofiber was synthesized and utilized as the sorbent material for the solid‐phase extraction of bisphenol A and five common phthalate esters in milk. The method of extraction integrated extraction and preconcentration of target analytes into a single step. Bisphenol A and five common phthalate esters were selected as target compounds for the development and evaluation of the method. The effects of operating parameters for nanofiber‐based solid‐phase extraction, such as selection and amount of sorbent, the volume fraction of perchlorate (precipitate protein), desorption solvent, volume of desorption solvent, and effect of salt addition were optimized. Under optimal conditions, higher extraction recoveries (89.6–118.0%) of the six compounds in milk spiked at three levels were obtained, and the satisfied relative standard deviation were ranged from 0.6 to 10.9%. The detection limits and quantification limits of the method ranged from 0.01 to 0.06 μg/L and 0.05 to 0.53 μg/L, respectively. Matrix effects were also verified and well controlled in the range of 91.3–109.3%. The new method gave better performance metrics than Chinese standard method and other published methods. Thus, the proposed method may be applied to the analysis of the phthalate esters and bisphenol A in complex matrixes.  相似文献   

10.
In the European Community, selected phthalic acid esters (PAE) are restricted in their use for the manufacture of toys and childcare articles to a content of 0.1% by weight. As PAE are mainly used as plasticisers for poly(vinyl chloride) (PVC), a rapid screening method for PVC samples with direct analysis in real time ionisation and single‐quadrupole mass spectrometry (DART‐MS) was developed. Using the ions for the protonated molecules, a limit of detection (LOD) of 0.05% was obtained for benzyl butyl phthalate, bis(2‐ethylhexyl) phthalate and diisononyl phthalate, while for dibutyl phthalate, di‐n‐octyl phthalate and diisodecyl phthalate the LOD was 0.1%. Validation of identification by the presence of ammonium adducts and characteristic fragment ions was possible to a content of ≥1% for all PAE, except for benzyl butyl phthalate (≥5%). Based on the fragment ions, bis(2‐ethylhexyl) phthalate could clearly be distinguished from di‐n‐octyl phthalate, if the concentrations were ≥5% and ≥1% at measured DART helium temperatures of 130 and 310°C, respectively. The complete analysis of one sample only took about 8 min. At the generally used gas temperature of 130°C, most toy and childcare samples did not sustain damage if their shape fitted into the DART source. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Magnetic graphitic carbon nitride nanocomposites were successfully prepared in situ and used to develop a highly sensitive magnetic solid‐phase extraction method for the preconcentration of phthalate esters such as di‐n‐butyl phthalate, butyl phthalate, dihexyl phthalate, and di‐(2‐ethyl hexyl) phthalate from water. The adsorption and desorption of the phthalate esters on magnetic graphitic carbon nitride nanocomposites were investigated and the parameters affecting the partition of the phthalate esters, such as adsorption, desorption, recovery, were assessed. Under the optimized conditions, the proposed method showed excellent sensitivity with limits of detection (S/N = 3) in the range of 0.05–0.1 μg/L and precision in the range of 1.1–2.6% (n = 5). This method was successfully applied to the analysis of real water samples, and good spiked recoveries over the range of 79.4–99.4% were obtained. This research provides a possibility to apply this nanocomposite for adsorption, preconcentration, or even removal of various carbon‐based ring or hydrophobic pollutants.  相似文献   

12.
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples.  相似文献   

13.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

14.
In this work, a porous carbon derived from amino‐functionalized material of Institut Lavoisier (C‐NH2‐MIL‐125) was prepared and coated onto a stainless‐steel wire through sol–gel technique. The coated fiber was used for the solid‐phase microextraction of trace levels of phthalate esters (diallyl phthalate, di‐iso‐butyl ortho‐phthalate, di‐n‐butyl ortho‐phthalate, benzyl‐n‐butyl ortho‐phthalate, and bis(2‐ethylhexy) ortho‐phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05–30.00 μg/L for green jasmine tea beverage samples, and 0.10–30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0–3.0 ng/L for green jasmine tea beverage sample, and 4.0–5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0–106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%.  相似文献   

15.
A microdispersive solid‐phase extraction method has been developed using multiwalled carbon nanotubes of 110–170 nm diameter and 5–9 μm length for the extraction of a group of nine phthalic acid esters (i.e., bis(2‐methoxyethyl) phthalate, bis‐2‐ethoxyethyl phthalate, dipropyl phthalate, butylbenzyl phthalate, bis‐2‐n‐butoxyethyl phthalate, bis‐isopentyl phthalate, bis‐n‐pentyl phthalate, dicyclohexyl phthalate, and di‐n‐octyl phthalate) from tap water as well as from different beverages commercialized in plastic bottles (mineral water, lemon‐ and apple‐flavored mineral water, and an isotonic drink). Determination was carried out by high‐performance liquid chromatography coupled to mass spectrometry. The extraction procedure was optimized following a step‐by‐step approach, being the optimum extraction conditions: 50 mL of each sample at pH 6.0, 80 mg of sorbent, and 25 mL of acetonitrile as elution solvent. To validate the methodology, matrix‐matched calibration and a recovery study were developed, obtaining determination coefficients >0.9906 and absolute recovery values between 70 and 117% (with relative standard deviations < 17%) in all cases. The limits of quantification of the method were between 0.173 and 1.45 μg/L. After the evaluation of the matrix effects, real samples were also analyzed, finding butylbenzyl phthalate in all samples (except in apple‐flavored mineral water), though at concentrations below its limit of quantification of the method.  相似文献   

16.
In this study, a simple, rapid and sensitive method for the determination of five phthalates including dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzyl butyl phthalate, and dicyclohexyl phthalate in fruit jellies by LC coupled with MS has been developed. Samples were pretreated by a dispersive SPE method, termed QuEChERS, which is an acronym for quick, easy, cheap, effective, rugged, and safe. The standard calibration curves were linear for all the analytes over the concentration range of 10–250 ng/mL, and the correlation coefficients ranged from 0.9976 to 0.9991. The LODs and LOQs were in the ranges of 0.09–3.68 ng/mL and 0.28–11.25 ng/mL, respectively. The accuracy of this method was evaluated by measuring the recovery from spiked samples. The recoveries of all five phthalates from samples spiked at three different concentrations (0.01, 0.03, and 0.05 mg/kg), were in the ranges of 83.5–103.9%, 86.7–95.8%, and 87.1–95.2%, respectively. The RSD values for the samples spiked at 0.01, 0.03 , and 0.05 mg/kg ranged from 2.0–7.6%, 1.4–6.4%, and 1.2–3.8%, respectively. The method has been used for the analysis of real samples and BBP and DEP were found in real samples.  相似文献   

17.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

18.
In this work, magnetic nanoporous carbon with high surface area and ordered structure was synthesized using cheap commercial silica gel as template and sucrose as the carbon source. The prepared magnetic nanoporous carbon was firstly used as an adsorbent for the extraction of phthalate esters, including diethyl phthalate, diallyl phthalate, and di‐n‐propyl‐phthalate, from lake water and aloe juice samples. Several parameters that could affect the extraction efficiency were optimized. Under the optimum conditions, the limit of detection of the method (S/N = 3) was 0.10 ng/mL for water sample and 0.20 ng/mL for aloe juice sample. The linearity was observed over the concentration range of 0.50–150.0 and 1.0–200.0 ng/mL for water and aloe juice samples, respectively. The results showed that the magnetic nanoporous carbon has a high adsorptive capability toward the target phthalate esters in water and aloe juice samples.  相似文献   

19.
A sensitive, rapid, and simple high‐performance liquid chromatography with UV detection method was developed for the simultaneous determination of seven phthalic acid esters (dimethyl phthalate, dipropyl phthalate, di‐n‐butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di‐(2‐ethylhexyl) phthalate, and di‐n‐octyl phthalate) in several kinds of beverage samples. Ultrasound and vortex‐assisted dispersive liquid–liquid microextraction method was used. The separation was performed using an Intersil ODS‐3 column (C18, 250 × 4.6 mm, 5.0 μm) and a gradient elution with a mobile phase consisting of MeOH/ACN (50:50) and 0.2 M KH2PO4 buffer. Analytes were detected by a UV detector at 230 nm. The developed method was validated in terms of linearity, limit of detection, limit of quantification, repeatability, accuracy, and recovery. Calibration equations and correlation coefficients (> 0.99) were calculated by least squares method with weighting factor. The limit of detection and quantification were in the range of 0.019–0.208 and 0.072–0.483 μg/L. The repeatability and intermediate precision were determined in terms of relative standard deviation to be within 0.03–3.93 and 0.02–4.74%, respectively. The accuracy was found to be in the range of –14.55 to 15.57% in terms of relative error. Seventeen different beverage samples in plastic bottles were successfully analyzed, and ten of them were found to be contaminated by different phthalic acid esters.  相似文献   

20.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号