首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

2.
NMR studies of the structure and dynamics of a system composed of the acidic polymer poly(acrylic acid) (PAA) and the basic polymer poly(4‐vinyl pyridine) (P4VP) are presented. This system aims at the application of anhydrous proton‐conducting membranes that can be used at elevated temperatures at which the proton conduction of hydrated membranes breaks down. The 1H NMR measurements have been preformed under fast magic angle spinning (MAS) conditions to achieve sufficient resolution and the applied 1H NMR methods vary from simple 1H MAS to double‐quantum filtered methods and two‐dimensional 1H double‐quantum spectroscopy. The dynamic behavior of the systems has been investigated via variable temperature 1H MAS NMR. 13C cross‐polarization MAS NMR provides additional aspects of dynamic and structural features to complete the picture. Different types of acidic protons have been identified in the studied PAA‐P4VP systems that are nonhydrogen‐bonded free acidic protons, hydrogen‐bonded dicarboxylic dimers, and protons forming hydrogen bonds between carboxylic protons and ring nitrogens. The conversion of dimer structures in dried PAA to free carboxylic acid groups is accomplished at temperatures above 380 K. However, the stability of hydrogen‐bonding strongly depends on the hydration level of the polymer systems. The effect of hydration becomes less apparent in the complexes. An inverse proportionality between hydrogen‐bonding strength and proton conduction in the PAA‐P4VP acid–base polymer blend systems was established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 138–155, 2009  相似文献   

3.
Solid polymer electrolytes for Lithium batteries applications are commonly prepared by dissolving a lithium salt in poly(ethylene oxide) (PEO)‐based materials. Their performance is strongly related to the structure of the polymer network. In this article, a new salt‐in‐polymer electrolyte prepared by the fast and easy radical photopolymerization of PEO acrylate oligomers is studied. Here, a difunctional monomer used as the polymer backbone is copolymerized with monofunctional monomers of different length and concentration. Thus, the crosslinking density and conductivity are changed. These systems are investigated by a detailed NMR study yielding local dynamics and mass transport by temperature‐dependent spin‐lattice relaxation time and PFG‐NMR diffusion measurements for different nuclei (7Li and 19F). The results indicate that a sufficiently long monofunctional oligoether improves the properties, since it provides a lower crosslinking density as well as more coordinating oxygens for the Li ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1571–1580  相似文献   

4.
Systematic molecular dynamics (MD) simulations are applied, combining the sulfonated fluorene–triarylamine copolymer anion poly((N‐(4‐butylphenyl)‐diphenylamine)‐alt‐fluorene 9,9'di‐n‐propane sulfonate) with a wide range of monovalent cations of different cation field strengths. The resulting MD trajectories are analyzed for each of the conjugated polyelectrolyte focusing on ion aggregation, and its influence on the static and dynamic polymer morphology as well as on the charge carrier mobilities that are relevant for the use of such hole transporting materials in organic solar cells and organic light emitting devices. A pronounced variation of the degree of cation clustering with the cation field strength is found to control the polymer morphology, cation mobility and thereby the time evolution of the Coulomb energy landscape for hole transport. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 965–974  相似文献   

5.
Hydrogen bonding between hard segments has a critical effect on the morphology and properties of polyurethanes. Influence of temperature on hydrogen bonded urethane network and melting behavior of a model semicrystalline segmented polyurethane was investigated by experiments and simulations. Polyurethane was synthesized by the stoichiometric reaction between p‐phenylene diisocyanate and poly(tetramethylene oxide) (PTMO) with a molecular weight of 1000 g/mol. Simulations were carried out using dissipative particle dynamics (DPD) and molecular dynamics (MD) approaches. Experimental melting behavior obtained by various techniques was compared with simulations. DPD simulations showed a room temperature microphase morphology consisting of a three‐dimensional hydrogen‐bonded urethane hard segment network in a continuous and amorphous PTMO matrix. The first‐order melting transitions of crystalline urethane hard segments observed during the continuous isobaric heating in DPD and MD simulations (340–360 K) were in reasonably good agreement with those observed experimentally, such as AFM (320–340 K), WAXS (330–360 K), and FTIR (320–350 K) measurements. Quantitative verification of the melting of urethane hard segments was demonstrated by sharp discontinuities in energy versus temperature plots obtained by MD simulations due to substantial decrease in the number of hydrogen bonds above 340 K. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 182–192  相似文献   

6.
This study aims to use molecular dynamics (MD) simulations of Kremer–Grest (KG) chains to inform future developments of models of entangled polymer dynamics. We perform nonequilibrium MD simulations, under shear flow, for well‐entangled KG chains. We study chains of 512 and 1000 KG beads, corresponding to 8 and 15 entanglements, respectively. We compute the linear rheological properties from equilibrium simulations of the stress autocorrelation and obtain from these data the tube model parameters. Under nonlinear shear flow, we compute the shear viscosity, the first and second normal stress differences, and chain contour length. For chains of 512 monomers, we obtain agreement with the results of Cao and Likhtman (ACS Macro. Lett. 2015, 4, 1376). We also compare our nonlinear results with the Graham, Likhtman and Milner‐McLeish (GLaMM) model. We identify some systematic disagreement that becomes larger for the longer chains. We made a comparison of the transient shear stress maximum from our simulations, two nonlinear models and experiments on a wide range of melts and solutions, including polystyrene (PS), polybutadiene, and styrene–butadiene rubber. This comparison establishes that the PS melt data show markedly different behavior to all other melts and solutions and KG simulations reproduce the PS data more closely than either the GLaMM or Xie and Schweizer models. We discuss the performance of these models against the data and simulations. Finally, by imposing a rapid reversing flow, we produce a method to extract the recoverable strain from MD simulations, valid for sufficiently entangled monodisperse polymers. We explore how the resulting data can probe the melt state just before the reversing flow. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1692–1704  相似文献   

7.
To obtain a hydrogel‐like elastic membrane, we prepared semi‐interpenetrating polymer networks (IPNs) by the radical polymerization of methacrylates such as 2‐methacryloyloxyethyl phosphorylcholine (MPC), 2‐hydroxyethylmethacrylate, and triethyleneglycol dimethacrylate diffused into segmented polyurethane (SPU) membranes swollen with a monomer mixture. The values of Young's modulus for the hydrated semi‐IPN membranes were less than that for an SPU membrane because of higher hydration, but they were much higher than that for a hydrated MPC polymer gel (non‐SPU). According to a thermal analysis, the MPC polymer influenced the segment association of SPU. The diffusion coefficient of 8‐anilino‐1‐naphthalenesulfonic acid sodium salt from the semi‐IPN membrane could be controlled with different MPC unit concentrations in the membrane, and it was about 7 × 102 times higher than that of the SPU membrane. Fibroblast cell adhesion on the semi‐IPN membrane was effectively reduced by the MPC units. We concluded that semi‐IPNs composed of the MPC polymer and SPU may be novel polymer materials possessing attractive mechanical, diffusive‐release, and nonbiofouling properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 68–75, 2003  相似文献   

8.
We have measured the self‐diffusion coefficients of a series of oligo‐ and poly(ethylene glycol)s with molecular weights ranging from 150 to 10,000, in aqueous solutions and gels of poly(vinyl alcohol) (PVA), using the pulsed‐gradient spin‐echo NMR techniques. The PVA concentrations varied from 0 to 0.38 g/mL which ranged from dilute solutions to polymer gels. Effects of the diffusant size and polymer concentration on the self‐diffusion coefficients have been investigated. The temperature dependence of the self‐diffusion coefficients has also been studied for poly(ethylene glycol)s with molecular weights of 600 and 2,000. Several theoretical models based on different physical concepts are used to fit the experimental data. The suitability of these models in the interpretation of the self‐diffusion data is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2396–2403, 1999  相似文献   

9.
Experimentally measured values of molecular properties or observables of biomolecules such as proteins are generally averages over time and space, which do not contain su?cient information to determine the underlying conformational distribution of the molecules in solution. The relationship between experimentally measured NMR 3J‐coupling values and the corresponding dihedral angle values is a particularly complicated case due to its nonlinear, multiple‐valued nature. Molecular dynamics (MD) simulations at constant temperature can generate Boltzmann ensembles of molecular structures that are free from a priori assumptions about the nature of the underlying conformational distribution. They suffer, however, from limited sampling with respect to time and conformational space. Moreover, the quality of the obtained structures is dependent on the choice of force ?eld and solvation model. A recently proposed method that uses time‐averaging with local‐elevation (LE) biasing of the conformational search provides an elegant means of overcoming these three problems. Using a set of side chain 3J‐coupling values for the FK506 binding protein (FKBP), we ?rst investigate the uncertainty in the angle values predicted theoretically. We then propose a simple MD‐based technique to detect inconsistencies within an experimental data set and identify degrees of freedom for which conformational averaging takes place or for which force ?eld parameters may be de?cient. Finally, we show that LE MD is the best method for producing ensembles of structures that, on average, ?t the experimental data.  相似文献   

10.
Sorption and diffusion properties of poly(vinylidene fluoride)‐graft‐poly(styrene sulfonic acid) (PVDF‐g‐PSSA) and Nafion® 117 polymer electrolyte membranes were studied in water/methanol mixtures. The two types of membranes were found to have different sorption properties. The Nafion 117 membrane was found to have a maximum in‐solvent uptake around 0.4 to 0.6 mole fraction of methanol, while the PVDF‐g‐PSSA membranes took up less solvent with increasing methanol concentration. The proton NMR spectra were recorded for membranes immersed in deuterated water/methanol mixtures. The spectra showed that the hydroxyl protons inside the membrane exhibit resonance lines different from the resonance lines of hydroxyl protons in the external solvent. The spectral features of the lines of these internal hydroxyl groups in the membranes were different in the Nafion membrane compared with the PVDF‐g‐PSSA membranes. Diffusion measurements with the pulsed field gradient NMR (PFG‐NMR) method showed that the diffusion coefficient of the internal hydroxyl groups in the solvent immersed Nafion membrane mirrors the changes in the diffusion coefficients of hydroxyl and methyl protons in the external solvent. For the PVDF‐g‐PSSA membranes, a decrease in the diffusion coefficient of the internal hydroxyl protons was seen with increasing methanol concentration. These results indicate that the morphology and chemical structure of the membranes have an effect on their solvent sorption and diffusion characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3277–3284, 2000  相似文献   

11.
Molecular motions of single polycarbonate (PC) chains threaded into crystalline γ‐cyclodextrin (γ‐CD) channels were examined using solid‐state 13C NMR and molecular dynamics simulations. The location of PC within the channels was confirmed by spin diffusion from a PC 13C label to natural‐abundance 13C of the γ‐CD. Rotor‐encoded longitudinal magnetization (RELM) (under 7‐kHz magic‐angle sample‐spinning conditions) was combined with multiple‐pulse 1H‐1H dipolar decoupling to detect large‐amplitude phenyl‐ring motion in both bulk PC and polycarbonate γ‐cyclodextrin inclusion compound (PC‐γ‐CD). The RELM results indicate that the phenyl rings in PC‐γ‐CD undergo 180° flips faster than 10 kHz just as in bulk PC. The molecular dynamics simulations show that the frequency of the phenyl‐ring flips depends on the cooperative motions of PC atoms and neighboring atoms of the γ‐CD channel. The distribution of protonated aromatic‐carbon laboratory and rotating‐frame 13C spin‐lattice relaxation rates for bulk PC and PC‐γ‐CD are similar but not identical. The distributions for both systems arise from site heterogeneities. For bulk PC, the heterogeneity is attributed to variations in local chain packing, and for PC‐γ‐CD the heterogeneity arises from variations in the location of the PC phenyl rings in the γ‐CD channel. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1271–1282, 2007  相似文献   

12.
A Fourier transform infrared/attenuated total reflectance technique was used to study the diffusion of water through poly(styrene‐b‐isobutylene‐b‐styrene) block copolymers (BCPs), as well as sulfonated (H+) and Na+‐sulfonated ionomer versions. Diffusion data were collected and interpreted for these membranes versus polystyrene block composition, degree of sulfonation, Na+ ion content in the ionomers, and the effect of initially dry versus prehydrated conditions. An “early time” diffusion coefficient, D, decreased with increasing percent polystyrene for a series of unmodified BCPs. D decreased with increasing degree of sulfonation, and with increasing ion content for the Na+‐exchanged samples and this was interpreted in terms of diffusion limitations caused by a strong tendency for ion hydration. The method also yielded information relating to the time evolution of water structure from the standpoint of degree of intermolecular hydrogen bonding. Membrane prehydration causes profound increases in D for both the unmodified BCP and sulfonated samples, as in plasticization. The simultaneous acquisition of information relating to interactions between water molecules and interactions of water molecules with functional groups on the host polymer matrix offers more information than conventional diffusion measurement techniques that simply count transported molecules. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 764–776, 2005  相似文献   

13.
Molecular dynamics (MD) simulations of three polysulfones (poly(ether sulfone) PESU, poly(phenylene sulfone) PPSU and polysulfone PSU) in dry and hydrated states were undertaken in order to study the specific interactions between water and glassy polymer matrices of the same structural family. Dry polysulfone models were generated using a hybrid pivot Monte Carlo‐MD single‐chain sampling technique and the resulting relaxed densities were found to be in close agreement with experimental data. Hydrated systems are found to reproduce quite well volumetric changes experimentally observed. The concentrations of sulfonic groups can explain qualitatively their different water solubilities. Water is preferentially hydrogen‐bonded to two sites which either link two polymer sites, or one polymer site and another water, or two other waters. A detailed analysis of these water bridges that are formed is presented. Only a small quantity of potential bridging sites are occupied for water contents near the experimental saturation. The free fractional volumes, the probe accessible volumes, the swelling of the polymers, the water‐polymer interactions and the hydrogen bond lifetimes, are also presented for these polysulfones. Water‐water interactions and water clusters are found to be more important in the more hydrophilic PESU in comparison to the less hydrophilic PSU. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

14.
管清梅  杨忠志 《中国化学》2007,25(6):727-735
A detailed theoretical investigation on Co^3+ hydration in aqueous solution has been carded out by means of molecular dynamics (MD) simulations based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The effective Co^3+ ion-water potential has been constructed by fitting to ab initio structures and binding energies for ionic clusters. And then the ion-water interaction potential was applied in combination with the ABEEM-7P water model to molecular dynamics simulations of single Co^3+(aq.) solution, managing to reproduce many experimental structural and dynamical properties of the solution. Here, not only the common properties (radial distribution function, angular distribution function and solvation energy) obtained for Co^3+ in ABEEM-7P water solution were in good agreement with those from the experimental methods and other molecular dynamics simulations but also very interesting properties of charge distributions, geometries of water molecules, hydrogen bond, diffusion coefficients, vibrational spectra are investigated by ABEEM/MM model.  相似文献   

15.
The phase structure of a series of ethylene‐vinyl acetate copolymers has been investigated by solid‐state wide‐line 1H NMR and solid‐state high‐resolution 13C NMR spectroscopy. Not only the degree of crystallinity but the relative contents of the monoclinic and orthorhombic crystals within the crystalline region varied with the vinyl acetate (VA) content. Biexponential 13C NMR spin–lattice relaxation behavior was observed for the crystalline region of all samples. The component with longer 13C NMR spin–lattice relaxation time (T1) was attributed to the internal part of the crystalline region, whereas the component with shorter 13C NMR T1 to the mobile crystalline component was located between the noncrystalline region and the internal part of the crystalline region. The content of the mobile crystalline component relative to the internal part of the crystalline region increased with the VA content, showing that the 13C NMR spin–lattice relaxation behavior is closely related to the crystalline structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2199–2207, 2002  相似文献   

16.
We discuss a phenomenological, coarse-grained simulation scheme, single-chain-in-mean-field (SCMF) simulation, for investigating the kinetics of phase separation in dense polymer blends and mixtures of polymers and solvents. In the spirit of self-consistent-field calculations, we approximate the interacting multichain problem by that of a single chain in an external field, which, in turn, depends on the local densities of the components. To study the time evolution of the mixture, we perform an explicit Monte Carlo (MC) simulation of an ensemble of independent chains in the external field and periodically calculate the average densities and update the external field. Unlike dynamic self-consistent-field theory, these SCMF simulations do not assume that the chain conformations relax much more quickly than the density and incorporate the single-chain dynamics explicitly rather than via an Onsager coefficient. This allows us to study systems with large spatial inhomogeneities and dynamic asymmetries. To assess the accuracy and limitations of the simulation scheme, we compare the results of SCMF simulations using a discretized Edwards Hamiltonian with computer simulations of the corresponding multichain system for (1) the early stages of spinodal decomposition of a symmetric binary polymer blend in response to a quench from χN = 0.314 to χN = 5 (where χ is the Flory–Huggins parameter and N is the number of segments), for which the growth rate of composition fluctuations is compared with MC simulations of the bond fluctuation model and alternative dynamic self-consistent-field calculations, and (2) the evaporation of a solvent from a low-molecular-weight thin polymer film, for which a comparison is made with molecular dynamics (MD) simulations of a bead-necklace model with a monomeric solvent. In the latter case, the polymer conformations are extracted from MD simulations and modeled in the SCMF simulations by a discretized Edwards Hamiltonian augmented by a chain-bending potential. From the MD simulations of thin polymer films in equilibrium with its vapor, phase coexistence has been determined, and the second- and third-order virial coefficients in the SCMF simulations have been adjusted accordingly. Finally, MD simulations of bulk solutions of a polymer and a solvent over a range of compositions, as well as the pure solvent at various densities, have been performed to determine self-diffusion coefficients that enter the SCMF simulations in the form of density-dependent segmental mobilities. A comparison of the polymer and solvent profiles in a thin film as a function of time and the fraction of the solvent evaporating from a solvent-swollen film, as obtained from MD simulations and parameterized SCMF simulations, shows satisfactory agreement for this simple mapping procedure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 934–958, 2005  相似文献   

17.
Classical molecular dynamics simulations were carried out to investigate the hydrophilic to hydrophobic transition of PNIPAM‐co‐PEGMA close to its lower critical solution temperature (LCST) in 1 M NaCl solution. PNIPAM‐co‐PEGMA is a copolymer of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) methacrylate (PEGMA). The copolymer consists of 38 monomer units of NIPAM with two PEGMA chains attached to the PNIAPM backbone. The PNIPAM‐co‐PEGMA was observed to go through the hydrophilic?hydrophobic conformational change for simulations at temperature slightly above its LCST. Na+ ions were found to bind strongly and directly with amide O, even more strongly with the O atoms on PEGAMS chains, whereas Cl? ions only exhibit weak interaction with the polymer. Significantly a novel caged stable metal‐organic complex involving a Na+ ion coordinated by six O atoms from the copolymer was observed after the PNIPAM‐co‐PEGMA copolymer went through conformational transition to form a hydrophobic folded structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
Sulfonated poly(arylene ether ether nitrile) (m-SPAEEN) copolymers are reported to have the property of reduced water uptake compared with other hydrocarbon membranes, such as sulfonated polysulfones or polyketones, with similar ion exchange capacity. It is believed that this difference is largely due to the nitrile group. In this study, to investigate the effect of the nitrile group on properties of polymer electrolyte membranes for fuel cell applications, we carried out a series of molecular dynamics (MD) simulations. We compared the results of MD simulations for m-SPAEEN and sulfonated poly(arylene ether sulfone)s (BPSH). We found that water molecules hydrate not only the sulfonate (SO3 ?) groups of m-SPAEEN but also other hydrophilic functional groups in the copolymers. Results showed that hydration around the nitrile group in m-SPAEEN and around the sulfone (SO2) group in BPSH differs in features related to water uptake: The former exhibits uptake of fewer water molecules than does the latter. This difference in hydration features causes m-SPAEEN to have a relatively low water-uptake level compared with BPSH.  相似文献   

19.
Different water environments in poly(N‐isopropyl acrylamide) (PNIPAAm) hydrogels are identified and characterized using 1H high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR). Local water environments corresponding to a “free” highly mobile species, along with waters showing restricted dynamics are resolved in these swollen hydro‐gels. For photo‐initiated polymerized PNIPAAm gels, an additional entrapped water species is observed. Spin–spin R2 relaxation experiments support the argument of reduced mobility in the restricted and entrapped water species. By combining pulse field gradient techniques with HRMAS NMR it is possible to directly measure the self‐diffusion rate for these different water environments. The behavior of the heterogeneous water environments through the lower critical solution temperature transition is described. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1521–1527  相似文献   

20.
The photolytic products and a new photoreduction mechanism of benzophenone (BP) as a photoinitiator in the photocrosslinking of polyethylene (PE) and its model compounds (MD) have been studied by means of fluorescence, ESR, 13C and 1H NMR spectroscopy. The fluorescence spectra from the PE and MD systems demonstrate that the main photoreduction product of BP (PPB) is benzpinacol formed by the recombination of two diphenylhydroxymethyl (K) radical intermediates. The ESR spectrum obtained from the UV irradiation of the MD/BP system gives positive evidence of K radicals. Two new PPB products: an isomer of benzpinacol with quinoid structure, 1‐phenyl‐hydroxymethylene‐4‐diphenyl‐hydroxymethyl‐2,5‐cyclohexa‐diene and three kinds of α‐alkylbenzhydrols have been detected and identified for the first time by 13C and 1H NMR spectroscopy from the MD systems. The latter could be formed by the reactions of K radicals with alkyl radicals produced by hydrogen abstraction of the excited triplet state 3(BP)* from polyethylene or its model compounds. These results provide new experimental evidence for elucidating the photoreduction mechanism of BP in the photoinitiated crosslinking of polyethylene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 999–1005, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号