首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chai  Yuyang  Li  Fengming  Song  Zhiguang  Zhang  Chuanzeng 《Nonlinear dynamics》2020,102(4):2179-2203

This paper is devoted to investigate the nonlinear vibration characteristics and active control of composite lattice sandwich plates using piezoelectric actuator and sensor. Three types of the sandwich plates with pyramidal, tetrahedral and Kagome cores are considered. In the structural modeling, the von Kármán large deflection theory is applied to establish the strain–displacement relations. The nonlinear equations of motion of the structures are derived by Hamilton’s principle with the assumed mode method. The nonlinear free and forced vibration responses of the lattice sandwich plates are calculated. The velocity feedback control (VFC) and H control methods are applied to design the controller. The nonlinear vibration responses of the sandwich plates with pyramidal, tetrahedral and Kagome cores are compared. The influences of the ply angle of the laminated face sheets, the thicknesses of the lattice core and face sheets and the excitation amplitude on the nonlinear vibration behaviors of the sandwich plates are investigated. The correctness of the H control algorithm is verified by comparing with the experiment results reported in the literature. The controlled nonlinear vibration response of the sandwich plate is computed and compared with that of the uncontrolled structural system. Numerical results indicate that the VFC and H control methods can effectively suppress the large amplitude vibration of the composite lattice sandwich plates.

  相似文献   

2.
A high-order discrete-layer theory and a finite element are presented for predicting the damping of laminated composite sandwich beams. The new layerwise laminate theory involves quadratic and cubic terms for approximation of the in-plane displacement in each discrete layer, while interlaminar shear stress continuity is imposed through the thickness. Integrated damping mechanics are formulated and both laminate and structural stiffness, mass and damping matrices are formed. A finite element method and a beam element are further developed for predicting the free vibration response, including modal frequencies, modal loss factors and through-thickness mode shapes. Numerical results and evaluations of the present model are shown. Modal frequencies and damping of sandwich composite beams are measured and correlated with predicted values. Finally, parametric studies illustrate the effect of core thickness and face lamination on modal damping and frequency values.  相似文献   

3.
Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom (DOF) nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics, including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.  相似文献   

4.
A theoretical framework for analyzing the pre- and postbuckling response of composite laminates and plates with piezoactuators and sensors is presented. The mechanics include nonlinear effects due to large rotations and stress stiffening, and are incorporated into a coupled mixed-field piezoelectric laminate theory. Using the previous mechanics, a nonlinear finite element method and an incremental-iterative solution are formulated for the analysis of nonlinear adaptive plate structures subject to in-plane electromechanical loading. A novel eight-node nonlinear plate finite element is also developed. Evaluation cases predict the buckling and postbuckling response of adaptive composite beams and plates with piezoelectric actuators and sensors. The case of piezoelectric buckling and postbuckling induced by the actuators is addressed and quantified. Finally, the possibility to actively mitigate the mechanical buckling and postbuckling response of adaptive piezocomposite plates is illustrated.  相似文献   

5.
This work presents a two-dimensional (2D) closed-form solution for the free-vibrations analysis of simply-supported piezoelectric sandwich plates. It has the originality to consider all components of the electric field and displacement, thus satisfying exactly the electric equilibrium equation. Besides, the formulation considers full layerwise first-order shear deformation theory and through-thickness quadratic electric potential. Its independent mechanical and electric variables are decomposed using Fourier series expansions, then substituted in the derived mechanical and electric 2D equations of motion. The resulting eigenvalue system is then condensed so that only nine mechanical unknowns are retained. After its validation on single- and three-layer piezoelectric, and hybrid sandwich plates, the present approach was then used to analyze thickness modes of a square sandwich plate with piezoceramic faces and elastic cross-ply composite core. It was found that only the first three thickness modes are global, thus can be modeled by the mixed equivalent single-layer/layerwise approach, often retained in the literature; the remaining higher thickness modes being characteristic of sandwich behavior; i.e., dominated by the deformations of either the core or the faces. These results, together with presented through-thickness variations of the mechanical and electric variables clearly recommend full layerwise modeling. Several numerical results are provided for future reference for validation of 2D approximate analytical or numerical approaches; in particular, of 2D piezoelectric adaptive finite elements.  相似文献   

6.
研究了超声速流中压电复合材料层合板的颤振特性及振动抑制方法。采用一阶活塞理论计算了超声速流场中的气动压力,基于经典层合板理论和Hamilton原理推导了压电复合材料层合板的动力学模型,设计了滑模观测器以减少观测溢出,通过Lyapunov方法证明观测器的稳定性,应用观测状态设计了LQR控制器,讨论了几何参数、铺设角度对压电复合材料层合板颤振特性的影响,利用SIMULINK仿真求解了层合板的脉冲响应,验证了控制器的有效性。结果表明,合理规划层合板的几何参数和铺设角度可提高系统颤振稳定性,滑模观测器能够较为准确地追踪原始系统且具有良好的鲁棒性,LQR控制可以在一定范围内消除层合板的颤振点,并且能够有效地控制压电复合材料层合板在颤振边界处的振动,Q矩阵越大,振动控制效果越好,压电层厚度越大,LQR控制效果越好。  相似文献   

7.
采用由厚度为8 mm的前置钛合金板、面密度为60 kg/m2的高强聚乙烯纤维增强复合材料层合板抗弹芯层、厚度为8 mm的后置钢板构成的夹芯式复合装甲,模拟舰船舷侧复合夹芯舱壁结构。根据面板与芯层间是否设置20 mm的间隙,将复合装甲结构定义为无间隙式、后间隙式及前后间隙式。为研究以上3种结构在55 g圆柱体弹高速冲击下的抗弹性能及破坏机理,开展了系列弹道实验,分析了钛合金板、高强聚乙烯纤维增强复合材料层合板芯层及钢质面板的破坏模式,探讨了结构间隙对复合装甲结构抗弹性能的影响。结果表明:前置钛合金板的破坏模式为剪切冲塞,靶板背弹面产生脆性断裂并伴随碎块崩落现象;聚乙烯纤维增强复合材料板的破坏模式及钢质背板的变形范围受间隙的影响较大,前置钛合金板受间隙影响较小;相同载荷侵彻下,间隙的存在有利于提高复合装甲结构的抗弹性能。  相似文献   

8.
An efficient numerical method is developed for the simulation of three dimensional transient dynamic response in thick laminated composite and sandwich plate structures involving very high frequencies and wave numbers. The proposed method incorporates Daubechies wavelet scaling functions for the interpolation of the in-plane displacements with a Galerkin formulation. It further explores the orthonormality and compact support of wavelet scaling functions to produce near diagonal consistent mass matrices and banded stiffness matrices. Hence, an uncoupled equivalent discrete spatial dynamic system is formulated, synthesized and rapidly solved in the wavelet domain using an explicit time integration scheme. The in-plane wavelet interpolation is further combined with an efficient high order layerwise laminate plate theory, that implements Hermite cubic splines for the through-the-thickness approximation of displacement fields. Numerical results are presented on the prediction of guided waves in laminated and thick sandwich composite plates and compared with respective solutions obtained by analytical, semi-analytical and time domain spectral element models. The method yielded higher convergence rates and substantial reductions in computational effort compared to respective time domain spectral finite elements.  相似文献   

9.
Optimum design of laminated composite sandwich plates with both continuous (core thickness) and discrete (layer group fiber angles and thicknesses) design variables subjected to strength constraint is studied via a two-level optimization technique. The strength of a sandwich plate is determined in a failure analysis using the Tsai–Wu failure criterion and the finite element method which is formulated on the basis of the layerwise linear displacement theory. In the first level optimization of the design process, the discrete design variables are temporarily treated as continuous variables and the corresponding minimum weight of the sandwich plate is evaluated subject to the strength constraint using a constrained multi-start global optimization method. In the second level optimization, the optimal solution obtained in the first level optimization is used in the branch and bound method for solving a discrete optimization problem to determine the optimal design parameters and the final weight of the plate. Failure test of laminated composite foam-filled sandwich plates with different lamination arrangements are performed to validate the proposed optimal design method. A number of examples of the design of laminated composite foam-filled sandwich plates are given to demonstrate the feasibility and applications of the proposed method.  相似文献   

10.
One-dimensional response of sandwich plates to underwater shock loading   总被引:5,自引:0,他引:5  
The one-dimensional shock response of sandwich plates is investigated for the case of identical face sheets separated by a compressible foam core. The dynamic response of the sandwich plates is analysed for front face impulsive loading, and the effect of strain hardening of the core material is determined. For realistic ratios of core mass to face sheet mass, it is found that the strain hardening capacity of the core has a negligible effect upon the average through-thickness compressive strain developed within the core. Consequently, it suffices to model the core as an ideally plastic-locking solid. The one-dimensional response of sandwich plates subjected to an underwater pressure pulse is investigated by both a lumped parameter model and a finite element (FE) model. Unlike the monolithic plate case, cavitation does not occur at the fluid-structure interface, and the sandwich plates remain loaded by fluid until the end of the core compression phase. The momentum transmitted to the sandwich plate increases with increasing core strength, suggesting that weak sandwich cores may enhance the underwater shock resistance of sandwich plates.  相似文献   

11.
A new micro-mechanical model is proposed for describing the bridging actions exerted by through-thickness reinforcement on delaminations in prepreg based composite materials, subjected to a mixed-mode (I–II) loading regime. The model applies to micro-fasteners in the form of brittle fibrous rods (Z-pins) inserted in the through-thickness direction of composite laminates. These are described as Euler–Bernoulli beams inserted in an elastic foundation that represents the embedding composite laminate. Equilibrium equations that relate the delamination opening/sliding displacements to the bridging forces exerted by the Z-pins on the interlaminar crack edges are derived. The Z-pin failure meso-mechanics is explained in terms of the laminate architecture and the delamination mode. The apparent fracture toughness of Z-pinned laminates is obtained from as energy dissipated by the pull out of the through-thickness reinforcement, normalised with respect to a reference area. The model is validated by means of experimental data obtained for single carbon/BMI Z-pins inserted in a quasi-isotropic laminate.  相似文献   

12.
Dynamic transient response of a composite sandwich plate with a penny-shaped debonded zone has been studied by using the finite element analysis within the ABAQUS/Explicit code in this paper. In order to accurately predict the response of the debonded sandwich plate to impulsive loading, contact–impact and sliding conditions along the damaged skin-to-core interface were imposed in the model through a kinematic predictor/corrector contact algorithm. The accuracy of the finite element (FE) model used was verified by comparing between numerical predictions and experimental data known in literature for the frequency spectrum of a cracked polycarbonate laminated beam containing a delamination. By analyzing nonlinear aspects of the transient dynamics of the sandwich plate, it is shown that the presence of the debond significantly alters its short-term response. In this respect, a considerable influence of contact events within the debonded region on the plate’s global dynamic response was found out. These results were presented in both time and frequency domains. The predictions performed also showed that the FE model applied would be useful for nondestructive evaluation of defects in composite sandwich plates, and for studying dynamic response of such plates to impact.  相似文献   

13.
本文发展了一种基于振动的复合材料板的损伤检测方法,将原有的一维间隔平滑法(1D GSM,one dimensional gapped smoothing method)发展至二维(2D GSM),并进一步提出二维间隔平滑法的标准化损伤指标.与其他多数基于振动分析的损伤检测方法不同,该方法只需分析含有损伤结构的检测数据,无需结构健康时的数据或理论、计算结果作为对比信号,即可判定缺陷的存在,并能准确定位.针对由冲击造成的准各向同性碳纤维增强复合材料板中的层裂损伤,本文采用压电片阵列组合激励的方式,得到了复合材料板多频率扭转振型的同时激励,可实现快速、高效的损伤检测.通过扫描式激光测振仪测得结构在不同固定频率下的结构响应ODS(operational deflection shapes),利用提出的二维间隔平滑法,分析得出损伤指标.实验结果表明,二维间隔平滑法可以准确地检测碳纤维增强复合材料板的冲击损伤,并具有较好的精度.  相似文献   

14.
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e.,1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed.By numerical simulation, periodic vibration and quasi-periodic vibration responses of the composite laminated piezoelectric plate are obtained.  相似文献   

15.
A modified mixed variational principle for piezoelectric materials is established and the state-vector equation of piezoelectric plates is deduced directly from the principle. Then the exact solution of the state-vector equation is simply given, and based on the semi-analytical solution of the state-vector equation, a realistic mathematical model is proposed for static analysis of a hybrid laminate and dynamic analysis of a clamped aluminum plate with piezoelectric patches. Both the plate and patches are considered as two three-dimensional piezoelectric bodies, but the same linear quadrilateral element is used to discretize the plate and patches. This method accounts for the compatibility of generalized displacements and generalized stresses on the interface between the plate and patches, and the transverse shear deformation and the rotary inertia of the plate and patches are also considered in the global algebraic equation system. Meanwhile, there is no restriction on the thickness of plate and patches. The model can be also modified to achieve a semi-analytical solution for the transient responses to dynamic loadings and the vibration control of laminated plate with piezoelectric patches or piezoelectric stiffeners.  相似文献   

16.
从近场动力学(简称PD)理论的PMB材料模型出发,结合Kelvin-Voigt粘弹性固体模型,建立PD率效应本构模型。采用LAMMPS软件模拟了环氧树脂板、纤维增强复合材料单向层板和多向铺层层合板受冲击的情况。通过分析各板的冲击损伤,探索纤维对板的增强作用。同时,分析了不同冲击速度下层合板上下表面的损伤程度,初步探讨了从低速碰撞到高速冲击过程中复合材料层合板的破坏机理及规律。  相似文献   

17.
Thermal residual-stresses introduced during manufacture and their effect on the natural frequencies and vibration modes of stringer stiffened composite plates is investigated. The principal idea in the work is to include stiffeners on the perimeter of a composite plate in which the laminate design of the stiffeners and plate are different. Such an arrangement yields manufacturing induced thermal residual-stresses; these stresses result from the difference in manufacturing and operating temperatures as well as the difference in thermal expansion coefficients and elastic properties of the plate and the stiffeners. The analysis is based on an enhanced Reissner–Mindlin plate theory and involves two separate calculations. In the first, the thermal residual-stress state is determined for an unconstrained plate. In the second, the free vibration problem is solved; thermal effects from the first calculation are included by way of nonlinear membrane-bending coupling which in turn defines the free vibration reference state. The problem is solved using a 16-node bi-cubic Lagrange element in a finite element formulation. Three different plate-stiffener geometries are used to illustrate the effects of stringer size, stringer placement and temperature difference. Two principal results are obtained: first, it is shown that thermal residual-stresses can have a significant effect on the natural frequencies; secondly, thermal residual-stresses can be tailored to increase natural frequencies. Therefore it is concluded that an evaluation of these stresses and a judicious analysis of their effects must be included in the design of this class of composite structures.  相似文献   

18.
This work analyzes the nonlinear impulse response of a composite sandwich plate exposed to a sudden point-wise transverse loading on the top face sheet. The nonlinearity arising from the core compressibility in the thickness direction is modeled and incorporated into the constitutive relations explicitly. As such, one can have a deep insight regarding the stress, strain and displacement profiles into the sandwich plate. The sandwich plate is assumed to be perfectly bonded at the face sheet/core interfaces. The equations of motion are formulated using Hamilton’s principle. The simply supported case is used to illustrate the procedure for solving the nonlinear equations. Numerical results are presented to demonstrate the response in terms of the transverse deformation and stresses in the composite sandwich plate. The effects of the variation of the geometrical parameters of the structure on the blast impulse response are also studied. Some conclusions are suggested regarding the associated optimal design of sandwich plates.  相似文献   

19.
多孔金属夹层板在冲击载荷作用下的动态响应   总被引:14,自引:4,他引:10  
赵桂平  卢天健 《力学学报》2008,40(2):194-206
借助两种有限元软件ABAQUS和LS_DYNA, 模拟和分析了两种厚度不同的泡沫铝合金夹层板(三明治板)、方孔蜂窝形夹层板和波纹形夹层板在冲击载荷下的动态响应. 4种夹层板的单位面积密度相同,冲击载荷分别用泡沫铝子弹与不锈钢子弹模拟. 讨论了泡沫金属夹层板和格构式夹层板在不同冲击载荷作用下的变形机制,重点在于对夹层板的吸能特性及板内各部分吸能变化规律的探讨.研究结果表明: 在泡沫子弹冲击下,夹层板主要是通过自身变形来消耗子弹动能,并转化为自身内能. 厚度为22\,mm的泡沫金属夹层板吸收能量最多,底面变形最小,是结构性能最优的夹层板;在刚性子弹高速冲击穿透过程中,格构式夹层板的吸能性能比单位面积密度相同的泡沫金属夹层板的吸能性能更好. 波纹形夹层板的能量吸收能力在4种板中最高.   相似文献   

20.
A previous study on impact response of composite laminates concluded that impact perforation was the most important damage stage in composite laminates subjected to impact loading, since impact characteristics (peak force, contact duration and absorbed energy) and mechanical properties degradation of composite laminates reached critical points once perforation took place. It was also found that thickness had a greater influence on impact perforation resistance than did in-plane dimensions. However, as the composite laminates became very thick, the manufacturing cost for obtaining high-quality composite laminates increased. In an effort to meet design requirements and reduce manufacturing costs, assembled composite plates, which were organized by assembling multiple thin composite laminates, were considered as alternatives for thick single-laminate composite plates. Various joining techniques including mechanical riveting, adhesive bonding and stitch joining, and their combinations, were used in assembling two- and three-laminate plates. Experimental results revealed that adhesive bonding outperformed other joining techniques. Although good bonding resulted in higher joining (bending) stiffness and subsequently higher perforation thresholds, increasing the laminate thickness or the number of laminates was found to be more efficient in raising perforation threshold than in improving the joining stiffness. The assembled three-laminate plates were found to have higher perforation thresholds than their thick single-laminate counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号