首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramolecular materials cross‐linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross‐linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host–guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host–guest inclusion complexes of β‐cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD‐Ad‐Fc gel). The βCD‐Ad‐Fc gel showed self‐healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD‐Ad‐Fc gel showed a redox‐responsive shape‐morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.  相似文献   

2.
Supramolecular materials cross‐linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross‐linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host–guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host–guest inclusion complexes of β‐cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD‐Ad‐Fc gel). The βCD‐Ad‐Fc gel showed self‐healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD‐Ad‐Fc gel showed a redox‐responsive shape‐morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.  相似文献   

3.
Supramolecular polymers and materials are attracting more and more attention nowadays due to their dynamic properties such as reversibility, stimuli-responsiveness and self-healing. Conventionally, bifunctional or multi-functional monomers are first covalently synthesized, followed by the supramolecular complexation to form supramolecular polymers and materials. Recently, we have proposed the supramonomer concept to construct supramolecular polymers and materials in a different way. Supramonomers are bifunctional or multi-functional monomers fabricated by noncovalent synthesis, but can undergo traditional covalent polymerization. In this highlight article, we will summarize and discuss the fabrication of supramonomer and covalent polymerization methods of supramonomers; fabrication of multi-responsive supramolecular polymers from supramonomers; and fabrication of supramolecular materials from supramonomers. It is highly anticipated that the supramonomer concept will enrich the methodology towards supramolecular polymers and materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 604–609  相似文献   

4.
By addition of a carboxylated amino acetate (2) to a low-molecular-weight hydrogel (1) which has a unique thermally induced volume-phase transition character, a macroscopic pH-responsive feature is newly conferred on the supramolecular hydrogel. The direct observation of temperature-dependent behavior of the mixed hydrogel clearly showed that the thermally induced swelling-shrinkage type of the volume phase transition at pH 4 is shifted to the gel–sol transition at pH 7 by 10?mol% addition of 2 to the hydrogel 1. On the basis of the measurements by TEM, SEM, XRD and FT-IR, it is conceivable that incorporation of the anionic carboxylate of 2 slightly disturbs the packing of the hydrogen bond belt of the mixed hydrogel. Such a slight disturbance greatly leads to the sol–gel transition by elevating temperature, instead of the volume-phase transition. Introduction of dynamic characteristics to supramolecular systems in a macroscopic level may extend the potential of these materials in various fields.  相似文献   

5.
A pH-responsive volume-change function was successfully introduced into a supramolecular hydrogel that contained GalNAc-appended (GalNAc=N-acetylgalactosamine) glutamate ester 1 by the simple mixing of it with an appropriate amount of 2 a or 2 b amphiphilic carboxylic acid. In the 1:1 mixture (1:2), the hydrogel swelled under neutral pH conditions, but shrank to almost half of its original volume under acidic pH conditions. The structure and pH response of the mixed hydrogel were characterized by using X-ray diffraction (XRD), confocal laser scanning microscopy (CLSM), transmission or scanning electron microscopy (TEM, SEM), and Fourier transform IR (FTIR) spectroscopy. Well-developed fibers formed a stable hydrogel by self-assembly, and under acidic conditions the charge of the carboxylic acid terminal (from the carboxylate anion) was neutralized and then these fibers became densely packed. This macroscopic pH response was also applied to the pH-triggered release of bioactive substances. In this mixed supramolecular hydrogel, the hydrogelator 1 provides a stable hydrogel structure and the additive 2 acts as a commander that is sensitive to an environmental pH signal. The present supramolecular copolymerization strategy should be useful for the construction of novel, stimuli-responsive, soft materials.  相似文献   

6.
Multicomponent supramolecular hydrogels are promising scaffolds for applications in biosensors and controlled drug release due to their designer stimulus responsiveness. To achieve rational construction of multicomponent supramolecular hydrogel systems, their in-depth structural analysis is essential but still challenging. Confocal laser scanning microscopy (CLSM) has emerged as a powerful tool for structural analysis of multicomponent supramolecular hydrogels. CLSM imaging enables real-time observation of the hydrogels without the need of drying and/or freezing to elucidate their static and dynamic properties. Through multiple, selective fluorescent staining of materials of interest, multiple domains formed in supramolecular hydrogels (e. g. inorganic materials and self-sorting nanofibers) can also be visualized. CLSM and the related microscopic techniques will be indispensable to investigate complex life-inspired supramolecular chemical systems.  相似文献   

7.
Supramolecular materials, dynamic materials by nature, are defined as materials whose components are bridged via reversible connections and undergo spontaneous and continuous assembly/disassembly processes under specific conditions. On account of the dynamic and reversible nature of noncovalent interactions, supramolecular polymers have the ability to adapt to their environment and possess a wide range of intriguing properties, such as degradability, shape-memory, and self-healing, making them unique candidates for supramolecular materials. In this critical review, we address recent developments in supramolecular polymeric materials, which can respond to appropriate external stimuli at the fundamental level due to the existence of noncovalent interactions of the building blocks.  相似文献   

8.
Supramolecular polymers are described that are derived from the association of two homoditopic heterocomplementary monomers through sextuple hydrogen-bonding arrays. They form fibers and a variety of different materials depending on the conditions. The strong affinity of the DAD-DAD (D=donor, A=acceptor) hydrogen-bonding sites for double-faced cyanuric acid type wedges drives the supramolecular polymeric assembly in apolar and chlorinated organic solvents. The marked influence of stoichiometry, as well as end-capping and cross-linking agents upon fiber formation is revealed in solution and by electron microscopy (EM). The results further contribute to the development of a supramolecular polymer chemistry that comprises reversible polymers formed through recognition-controlled noncovalent connections between the molecular components. Such materials are, by nature, dynamic and present adaptive character in view of their ability to respond to external stimuli.  相似文献   

9.
Most recent advances in the synthesis of supramolecular hydrogels based on low molecular weight gelators (LMWGs) have focused on the development of novel hybrid hydrogels, combining LMWGs and different additives. The dynamic nature of the noncovalent interactions of supramolecular hydrogels, together with the specific properties of the additives included in the formulation, allow these novel hybrid hydrogels to present interesting features, such as stimuli-responsiveness, gel-sol reversibility, self-healing and thixotropy, which make them very appealing for multiple biomedical and biotechnological applications. In particular, the inclusion of magnetic nanoparticles in the hydrogel matrix results in magnetic hydrogels, a particular type of stimuli-responsive materials that respond to applied magnetic fields. This review focuses on the recent advances in the development of magnetic supramolecular hydrogels, with special emphasis in the role of the magnetic nanoparticles in the self-assembly process, as well as in the exciting applications of these materials.  相似文献   

10.
Liu Y  Wang Z  Zhang X 《Chemical Society reviews》2012,41(18):5922-5932
Supramolecular polymers are made of monomers that are held together by noncovalent interactions. This is the reason for the wide range of novel properties, such as reversibility and responses to stimuli, exhibited by supramolecular polymers. A range of supramolecular polymerization methods have been developed leading to a number of novel supramolecular materials. However, standard techniques for the characterization of supramolecular polymers have yet to be established. The dynamic nature of supramolecular polymers makes them difficult to be fully characterized using conventional polymer techniques. This tutorial review summarizes various methods for characterizing supramolecular polymers, including theoretical estimation, size exclusion chromatography, viscometry, light scattering, vapor pressure osmometry, mass spectrometry, NMR spectroscopy, scanning probe microscopy, electron microscopy, and atomic force microscopy-based single molecule force spectroscopy. Each of these methods has its own particular advantages and disadvantages. Most of the methods are used to characterize the supramolecular polymer chain itself. However, some of the methods can be used to study the self-assembled state formed by supramolecular polymers. The characterization of a supramolecular polymer cannot be realized with a single method; a convincing conclusion relies on the combination of several different techniques.  相似文献   

11.
Controlling the morphology of supramolecular nanostructures in response to external stimuli is an important challenge in the development of functional soft materials. Here we show that a morphological transformation from 2D nanosheets to a network of 1D nanofibers is triggered by heating, which induces molecular conversion of a bolaamphiphile to a hydrogelator by means of a retro‐Diels–Alder reaction, thereby producing a new heat‐set supramolecular hydrogel. We anticipate that our design will be a starting point for more sophisticated supramolecular systems that integrate the thermodynamics of molecular assembly and the kinetics of chemical reactions to create complex supramolecular nanostructures.  相似文献   

12.
The most pressing challenges for light-driven hydrogel actuators include reliance on UV light, slow response, poor mechanical properties, and limited functionalities. Now, a supramolecular design strategy is used to address these issues. Key is the use of a benzylimine-functionalized anthracene group, which red-shifts the absorption into the visible region and also stabilizes the supramolecular network through π–π interactions. Acid–ether hydrogen bonds are incorporated for energy dissipation under mechanical deformation and maintaining hydrophilicity of the network. This double-crosslinked supramolecular hydrogel developed via a simple synthesis exhibits a unique combination of high strength, rapid self-healing, and fast visible-light-driven shape morphing both in the wet and dry state. As all of the interactions are dynamic, the design enables the structures to be recycled and reprogrammed into different 3D objects.  相似文献   

13.
The most pressing challenges for light‐driven hydrogel actuators include reliance on UV light, slow response, poor mechanical properties, and limited functionalities. Now, a supramolecular design strategy is used to address these issues. Key is the use of a benzylimine‐functionalized anthracene group, which red‐shifts the absorption into the visible region and also stabilizes the supramolecular network through π–π interactions. Acid–ether hydrogen bonds are incorporated for energy dissipation under mechanical deformation and maintaining hydrophilicity of the network. This double‐crosslinked supramolecular hydrogel developed via a simple synthesis exhibits a unique combination of high strength, rapid self‐healing, and fast visible‐light‐driven shape morphing both in the wet and dry state. As all of the interactions are dynamic, the design enables the structures to be recycled and reprogrammed into different 3D objects.  相似文献   

14.
自组装现象是生命科学最本质的内容之一,生物体系可以精确地利用非共价键相互作用形成高度有序的功能组装体.受到大自然的启发,近年来利用分子自组装构筑包括超分子聚合物在内的有序聚集体是超分子科学的研究热点.此类组装体不仅在拓扑学上具有重要的意义,而且可以用来制备动态的超分子功能材料.冠醚作为第一代超分子主体化合物,由于其结构...  相似文献   

15.
氧化石墨烯是一种具有单原子厚度的二维材料, 具有优异的力学性能和良好的水分散性, 其表面有大量的含氧官能团. 将氧化石墨烯引入水凝胶体系中可以提高水凝胶的机械性能, 丰富其刺激响应的类型. 目前, 氧化石墨烯水凝胶在高强度、 吸附、 自愈合及智能材料等很多领域均有出色的表现. 氧化石墨烯水凝胶的研究已有10年的历史. 本文总结了氧化石墨烯水凝胶的制备方法, 归纳了智能氧化石墨烯水凝胶在光热响应、 pH响应和自愈合3个方面的响应机理和研究进展, 并综合评述了其在高强度水凝胶、 生物医学、 智能材料和污水处理等方面的应用前景.  相似文献   

16.
As polymers and polymeric materials are “the” smart invention and technological driving force of the 20th century, the quest for self‐healing or self‐repairing polymers is strong. The concept of supramolecular self‐healing materials relies on the use of noncovalent, transient bonds to generate networks, which are able to heal the damaged site, putting aspects of reversibility and dynamics of a network as crucial factors for the understanding and design of such self‐healing materials. This Review describes recent examples and concepts of supramolecular polymers based on hydrogen bonding, π–π interactions, ionomers, and coordinative bonds, thus convincingly discussing the advantages and versatility of these supramolecular forces for the design and realization of self‐healing polymers.  相似文献   

17.
Supramolecular polymers from the bolaamphiphilic L ‐histidine ( BolaHis ) and benzene dicarboxylic acids (o‐phthalic acid, OPA ; isophthalic acid, IPA and terephthalic acid, TPA ) were found to form hydrogels although neither of the single components could gel water. It was suggested that the hydrogen bond and ionic interactions among different imidazole and carboxylic acid groups are responsible for the formation of the supramolecular polymer as well as the hydrogel formation. Depending on the structures of the dicarboxylic acids, different behaviors of the gels were observed. The hydrogels from OPA / BolaHis and IPA / BolaHis showed thixotropic properties, that is, the hydrogel was destroyed by hand shaking and then slowly gelated again at room temperature. However, the hydrogels of TPA / BolaHis could not. Interestingly, when EuIII was doped into IPA / BolaHis supramolecular polymers, very strong luminescence enhancement was observed. FT‐IR spectroscopies and XRD analysis revealed that the strong luminescence enhancement could be attributed to the matched supramolecular nanostructures, which render the correct binding and a good dispersion of EuIII ions. The work offers a new approach for fabricating functional hydrogels through the supramolecular polymers.  相似文献   

18.
《中国化学快报》2021,32(11):3636-3640
Zwitterionic polymer materials have been extensively studied, but zwitterionic peptides supramolecular hydrogel materials are rarely studied. In this study, the preparation of two zwitterionic hydrogels using self-assembled peptides were reported. The hydrogels could be fabricated easily by changing the temperature or enzyme catalysis in a short time. And the differences in structure and function of the zwitterion peptide hydrogels caused by the two preparation methods were also be compared. We found that the hydrogel prepared by enzyme induced self-assembly has better solubility and lower cytotoxicity than that prepared by the heating-cooling process. The result showed the enzyme induced self-assembly way to form zwitterionic peptides supramolecular hydrogel materials could have further biomedical applications.  相似文献   

19.
Photoresponsive supramolecular hydrogel was fabricated from a small azobenzene-bridged dicationic pyridinium salt in the aqueous solution. The UV-vis light triggered reversible gel-sol transformation of such low-molecular-weight supramolecular hydrogel was systematically investigated through various analytical techniques.  相似文献   

20.
Nature has engineered delicate synergistic covalent and supramolecular polymers (CSPs) to achieve advanced life functions, such as the thin filaments that assist in muscle contraction. Constructing artificial synergistic CSP materials with bioinspired mechanically adaptive features, however, represents a challenging goal. Here, we report an artificial CSP system to illustrate the integration of a covalent polymer (CP) and a supramolecular polymer (SP) in a synergistic fashion, along with the emergence of notable mechanical and dynamic properties which are unattainable when the two polymers are formed individually. The synergistic effect relies on the peculiar network structures of the SP and CPs, which endow the resultant CSPs with overall improved mechanical performance in terms of the stiffness, strength, stretchability, toughness, and elastic recovery. Moreover, the dynamic properties of the SP, including self‐healing, stimuli‐responsiveness, and reprocessing, are also retained in the CSPs, thus leading to their application as programmable and tunable materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号