首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   11篇
化学   147篇
晶体学   1篇
力学   1篇
数学   4篇
物理学   25篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   18篇
  2010年   1篇
  2009年   6篇
  2008年   16篇
  2007年   9篇
  2006年   13篇
  2005年   8篇
  2004年   12篇
  2003年   13篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1986年   1篇
  1985年   2篇
  1906年   2篇
排序方式: 共有178条查询结果,搜索用时 31 毫秒
1.
The first metal-catalyzed oxidative alkynylations of primary alcohols or aldehydes to form α,β-acetylenic ketones (ynones) are described. Deuterium labelling studies corroborate a novel reaction mechanism in which alkyne hydroruthenation forms a transient vinylruthenium complex that deprotonates the terminal alkyne to form the active alkynylruthenium nucleophile.  相似文献   
2.
The use of alcohols and unsaturated reactants for the redox‐triggered generation of nucleophile–electrophile pairs represents a broad, new approach to carbonyl addition chemistry. Discrete redox manipulations that are often required for the generation of carbonyl electrophiles and premetalated carbon‐centered nucleophiles are thus avoided. Based on this concept, a broad, new family of enantioselective C? C coupling reactions that are catalyzed by iridium or ruthenium complexes have been developed, which are summarized in this Minireview.  相似文献   
3.
Hydrogenation of π-unsaturated reactants in the presence of carbonyl compounds or imines promotes reductive C-C coupling, providing a byproduct-free alternative to stoichiometric organometallic reagents in an ever-increasing range of C=X (X = O, NR) additions. Under transfer hydrogenation conditions, hydrogen exchange between alcohols and π-unsaturated reactants triggers generation of electrophile-nucleophile pairs, enabling carbonyl addition directly from the alcohol oxidation level, bypassing discrete alcohol oxidation and generation of stoichiometric byproducts.  相似文献   
4.
Highly enantioselective catalytic reductive coupling of allyl acetate with acetylenic ketones occurs in a chemoselective manner in the presence of aliphatic or aromatic ketones. This method was used to construct C14‐C23 of pladienolide D in half the steps previously required.  相似文献   
5.
6.
7.
Classical protocols for carbonyl allylation, propargylation and vinylation typically rely upon the use of preformed allyl metal, allenyl metal and vinyl metal reagents, respectively, mandating stoichiometric generation of metallic byproducts. Through transfer hydrogenative C C coupling, however, carbonyl addition may be achieved from the aldehyde or alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Here, we review transfer hydrogenative methods for carbonyl addition, which encompass the first catalytic protocols enabling direct C H functionalization of alcohols.  相似文献   
8.
Direct ruthenium‐catalyzed C? C coupling of alkynes and vicinal diols to form β,γ‐unsaturated ketones occurs with complete levels of regioselectivity and good to complete control over the alkene geometry. Exposure of the reaction products to substoichiometric quantities of p‐toluenesulfonic acid induces cyclodehydration to form tetrasubstituted furans. These alkyne‐diol hydrohydroxyalkylations contribute to a growing body of merged redox‐construction events that bypass the use of premetalated reagents and, hence, stoichiometric quantities of metallic by‐products.  相似文献   
9.
Merging the characteristics of transfer hydrogenation and carbonyl addition, a broad new class of ruthenium(0)‐catalyzed cycloadditions has been developed. As discussed in this Minireview, fused or bridged bicyclic ring systems are accessible in a redox‐independent manner in C?C bond‐forming hydrogen transfer reactions of diols, α‐ketols, or 1,2‐diones with diverse unsaturated reactants.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号