首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The paper is devoted to investigation of the processes of excitation energy transfer between the host cations (Tb3+ ions) and the activators (Ce3+ and Eu3+ ions) in single-crystalline films of Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet which is considered as a promising luminescent material for the conversion of LED's radiation. The cascade process of excitation energy transfer is shown to be realized in TbAG:Ce,Eu: (i) from Tb3+ ions to Ce3+ and Eu3+ ions; (ii) from Ce3+ ions to Eu3+ ions by means of dipole-dipole interaction and through Tb3+ ion sublattice.  相似文献   

2.
The processes of excitation energy transfer in phosphors based on single-crystal Tb3Al5O12:Ce (TbAG:Ce) and Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet films have been investigated. These films are considered to be promising materials for screens for X-ray images and luminescence converters of blue LED radiation. The conditions for excitation energy transfer from the matrix (Tb3+ cations) to Ce3+ and Eu3+ ions in TbAG:Ce and TbAG:Ce,Eu phosphors have been analyzed in detail. It is established that a cascade process of excitation energy transfer from Tb3+ ions to Ce3+ and Eu3+ ions and from Ce3+ ions to Eu3+ ions is implemented in TbAG:Ce,Eu via dipole-dipole interaction and through the Tb3+ cation sublattice.  相似文献   

3.
The preparation and upconversion luminescence properties of the Yb3+ and Tb3+ co-doped glass ceramics containing SrF2 nanocrystals were investigated. The formation of SrF2 nanocrystals was confirmed by X-ray diffraction and transmission electron microscopy. Both microstructural and spectral analysis indicated that the Yb3+ and Tb3+ ions were enriched in the precipitated SrF2 nanocrystals, which provide much lower phonon vibration energy than the glass matrix. Due to the efficient cooperative sensitization from Yb3+ to Tb3+ and the relatively low maximum phonon energy of SrF2 nanocrystals, the Yb3+ and Tb3+ co-doped glass ceramics exhibited intense upconversion luminescence, including ultraviolet emission at 382 nm.  相似文献   

4.
Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO3:Bi3+,Eu3+ and strong green emission for (Y,Gd)BO3:Bi3+,Tb3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu3+-doped or Tb3+-doped (Y,Gd)BO3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu3+-doped or Tb3+-doped (Y,Gd)BO3. The luminescence enhancement of Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors is due to energy transfer from Bi3+ ion to Eu3+ or Tb3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi3+ and Eu3+ or Tb3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp.  相似文献   

5.
The Mn-, Cr-doped and Mn, Cr-co-doped MgAl2O4 powders have been synthesized via a gel-solid reaction method. Energy transfer from Mn2+ to Cr3+ has been observed for the first time in the co-doped MgAl2O4 phosphors. When excited with blue light with a wavelength of 450 nm at room temperature, both green emission from Mn2+ around 520 nm and red emission from Cr3+ around 675and 693 nm were generated. Moreover, the color of the emission can be modified by controlling the doping concentrations of Mn2+ and Cr3+. Therefore, MgAl2O4: Mn2+, Cr3+ could be used as a single-phased phosphor for white LED with a blue LED chip. The energy transfer in terms of Mn2+ to Cr3+ is determined by means of radiation and reabsorption.  相似文献   

6.
采用高温固相法合成了BaZnP2O7:Eu2+,Mn2+荧光粉,并对其发光性质及Eu2+对Mn2+的能量传递机理进行了研究.Eu2+和Mn2+在380 nm和670nm的发射峰分别由Eu2+的5d—4f跃迁和Mn2+4T1(4关键词: 磷酸盐 2+')" href="#">Eu2+ 2+')" href="#">Mn2+ 能量传递  相似文献   

7.
Xi Chen 《Journal of luminescence》2011,131(12):2697-2702
In this work, we report preparation, characterization and luminescent mechanism of a phosphor Sr1.5Ca0.5SiO4:Eu3+,Tb3+,Eu2+ (SCS:ETE) for white-light emitting diode (W-LED)-based near-UV chip. Co-doped rare earth cations Eu3+, Tb3+ and Eu2+ as aggregated luminescent centers within the orthosilicate host in a controlled manner resulted in the white-light phosphors with tunable emission properties. Under the excitation of near-UV light (394 nm), the emission spectra of these phosphors exhibited three emission bands: one broad band in the blue area, a second band with sharp lines peaked in green (about 548 nm) and the third band in the orange-red region (588-720 nm). These bands originated from Eu2+ 5d→4f, Tb3+5D47FJ and Eu3+5D07FJ transitions, respectively, with comparable intensities, which in return resulted in white light emission. With anincrease of Tb3+ content, both broad Eu2+ emission and sharp Eu3+ emission increase. The former may be understood by the reduction mechanism due to the charge transfer process from Eu3+ to Tb3+, whereas the latter is attributed to the energy transfer process from Eu2+ to Tb3+. Tunable white-light emission resulted from the system of SCS:ETE as a result of the competition between these two processes when the Tb3+ concentration varies. It was found that the nominal composition Sr1.5Ca0.5SiO4:1.0%Eu3+, 0.07%Tb3+ is the optimal composition for single-phased white-light phosphor. The CIE chromaticity calculation demonstrated its potential as white LED-based near-UV chip.  相似文献   

8.
Red-emitting Y2O3:Eu3+ and green-emitting Y2O3:Tb3+ and Y2O3:Eu3+, Tb3+ nanorods were synthesized by hydrothermal method. Their structure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photoluminescence (PL) property of Y2O3:Eu3+,Tb3+ phosphor was investigated. In the same host (Y2O3), upon excitation with ultraviolet (UV) irradiation, it is shown that there are strong emissions at around 610 and 545 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+ and 5D4-7F5 transition of Tb3+, respectively. Different qualities of Eu3+and Tb3+ ions are induced into the Y2O3 lattice. From the excitation spectrum, we speculate that there exists energy transfer from Tb3+ to Eu3+ ions .The emission color of powders reveals regular change in the separation of light emission. These powders can meet with the request of optical display material for different colors or can be potentially used as labels for biological molecules.  相似文献   

9.
Comparative analysis of the luminescent properties of Y3Al5O12:Ce (YAG:Ce) transparent optical ceramics (OС) with those of single crystal (SC) and single crystalline film (SCF) analogues has been performed under excitation by pulsed synchrotron radiation in the fundamental absorption range of YAG host. It has been shown that the properties of YAG:Ce OC are closer to the properties of the SCF counterpart, where YAl antisite defects are completely absent, rather than to the properties of SC of this garnet with large concentration of YAl antisite defects. At the same time, the luminescence spectra of YAG:Ce OC show weak emission bands in the 200-470 nm range related to YAl antisite defects and charged oxygen vacancies (F+ and F centers). YAG:Ce ОС also possesses significantly larger contribution of slow components in the Ce3+ luminescence decay under high-energy excitation in comparison with SC and SCF of this garnet due to the involvement of antisite defects, charged oxygen vacancies as well as boundaries of grains in the energy transfer processes from the host to the Ce3+ ions.  相似文献   

10.
The photoluminescence of Ce3+, Tb3+ and Mn2+ ions was investigated in the Zn(PO3)2 glass. The blue and green emissions of Tb3+ ions and the red emission of Mn2+ ions are enhanced upon UV excitation through a non-radiative energy transfer from Ce3+ to Tb3+ and Mn2+ ions. The efficiency of this transfer was estimated in at least 62%. It is demonstrated that this glass activated with three ions (Ce3+, Tb3+ and Mn2+) can generate white light emission (x=0.420 and y=0.423 chromaticity coordinates and 3440 K colour temperature) under excitation at 254 nm, i.e., using an AlGaN-based LED as excitation source.  相似文献   

11.
The emission properties of Eu2+ and Mn2+ in monoclinic SrAl2Si2O8 (M-SAS) and hexagonal BaAl2Si2O8 (H-BAS), both of which have only one alkaline-earth site, were studied. The emission peaks of both Eu2+ (405 nm) and Mn2+ (564 nm) in SrAl2Si2O8, are located at longer wavelengths, compared with those in H-BAS (373 nm for Eu2+ and 518 nm for Mn2+), because of the stronger crystal field strength at the Sr site. EPR spectra showed that the g values of Mn2+ are 4.5065 in M-SAS:Mn and 2.0247 in H-BAS:Mn. Magnetic measurements proved that Mn2+ was at high-spin state in both hosts. The large g value of Mn2+ in M-SAS was ascribed to the mixing of the first excitation state to the ground state, both of which have lower d orbital degeneracy due to the lower symmetry of Mn2+ site. The transfer efficiency from Eu2+ to Mn2+was about 10% in M-SAS, higher than that in H-BAS (5%). This was probably because Eu2+ emission overlaps the relatively low excitation level of Mn2+ in M-SAS. In order to obtain high transfer efficiency, it was necessary for the Eu2+ emission to overlap the lowest excitation level of Mn2+. The results obtained in this work may be helpful to design the new white or red phosphors for white-light emitting diode (w-LED) applications.  相似文献   

12.
CePO4:Tb nanorods were synthesized via a simple wet-chemical route. The as-synthesized CePO4:Tb nanorods present high photoluminescence efficiency due to an efficient energy transfer form Ce3+ to Tb3+. However, heat treatment at 150 °C in air leads to a significant decrease of photoluminescence. X-ray photoelectron spectroscopy and excitation spectra revealed the oxidation of Ce3+ to Ce4+ in the heat-treatment process, which should be responsible for significant photoluminescence degradation due to the breakage of Ce3+→Tb3+ energy transfer. This conclusion is further supported by atmosphere and size effects of photoluminescence of CePO4:Tb under the heat treatment.  相似文献   

13.
Low temperature quenching and high efficiency CaSc2O4:Ce3+ (CSO:Ce3+) phosphors co-doped with Tm3+, La3+ and Tb3+ ions were prepared by a solid state method and the phase-forming, morphology, luminescence and application properties of these phosphors were investigated. The results showed that co-doping of Tm3+, La3+ and Tb3+ ions can improve the luminescence properties and decrease temperature quenching of CSO:Ce3+ phosphor remarkably. High efficiency green-light-emitting diodes were fabricated with the prepared phosphors and InGaN blue-emitting (∼460 nm) chips. The good performances of the green-light-emitting LEDs made from co-doped CSO:Ce3+ phosphors confirm the luminescence enhancement and indicate that Tm3+, La3+ and Tb3+ co-doped CSO:Ce3+ phosphors are suitable candidates for the fabrication of high efficiency white LEDs.  相似文献   

14.
Enhanced green photoluminescence and cathodoluminescence (CL) from Tb3+ ions due to co-doping with Ce3+ ions were observed from SiO2:Ce,Tb powder phosphors prepared by a sol-gel technique. Blue emission from the Ce3+ ions was completely suppressed by Tb co-doping, presumably due to energy transfer from Ce3+ to Tb3+. In addition, the green CL intensity from SiO2:Ce,Tb degraded by ∼50% when the powders were irradiated for 10 h with a 2 keV, 54 mA/cm2 beam of electrons in an ultra-high vacuum chamber containing either 1×10−8 or 1×10−7 Torr O2. Desorption of oxygen from the surface was observed during the decrease of CL intensity. The mechanisms for energy transfer from Ce3+ ions to Tb3+ ions to enhance the green luminescence, and mechanisms for desorption of oxygen from the phosphor surface that would result in decreased CL intensity are discussed.  相似文献   

15.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

16.
A spectroscopic study is carried out in which the effects of added Ca2+ and Ru4+ transition metal ions on some characteristics of the emission of Gd2O2S : Tb3+ phosphors (energy levels, intensities, lifetimes) are examined and compared. In order to distinguish the Tb3+ emissions from impurity ones, the electronic energy levels of trivalent terbium are determined and the energy level scheme is completed by a crystal field analysis. The optical spectra reveal no terbium doped impurity phase; however, other rare earth ions present as impurities in the starting materials are detected. They are identified, and the influence of the added Ca2+ and Ru4+ on their emission lines is also examined.  相似文献   

17.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

18.
Optical absorption and luminescence spectra of ytterbium and terbium codoped BaB2O4 (β-BBO and α-BBO) crystals grown in different conditions have been studied. Low-temperature absorption peaks were observed in all samples. Features related to rare earth ions were observed in absorption and luminescence spectra. Absorption and emission in the range 860-1000 nm are caused by 2F5/22F7/2 transitions in Yb3+ ions. Emission peaks at 500, 550, 590 and 630 nm correspond to 5D47F6, 7F5, 7F4, and 7F3 transitions of Tb3+ ions, respectively. The probable reasons of variations in spectroscopic features related to Yb in BBO host are discussed. It has been shown that the replacement of Ва2+ by Yb3+ in the lattice of ВаВ2О4 results in the decrease in the symmetry of oxygen surrounding of Yb3+.  相似文献   

19.
The luminescence properties of Ba3Tb0.9Eu0.1(PO4)3 and Ba3Gd0.9Eu0.1(PO4)3 phosphors were studied for excitation over the 120-300 nm wavelength range. It is found that Tb3+, which exhibits a strong vacuum-ultraviolet (VUV) absorption band, provides sensitisation of Eu3+ emission in this host. This effect can be used to develop phosphors with enhanced conversion efficiency of the VUV radiation into visible light.  相似文献   

20.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号