首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A series of alternating copolymers of electron‐rich arylamine and electron‐deficient 2,1,3‐benzothiadiazole (BT), PV‐BT, DP‐BT, and TP‐BT, were synthesized by Heck coupling reaction. UV–vis absorption and fluorescence spectra show that the copolymerization of electron‐rich diphenylamine (DP), triphenylamine (TP), MEH‐PV (PV), and electron‐deficient BT results in low‐bandgap conjugated polymers. Within the three copolymers of PV‐BT, DP‐BT, and TP‐BT, TP‐BT possesses the highest hole mobility of 4.68 × 10? 5 cm2/V, as determined from the space charge limited current (SCLC) model. The bulk heterojunction‐typed polymer solar cells (PSCs) were fabricated with the blend of the copolymers and PCBM as the photosensitive layer. The power conversion efficiencies (PCE) of the PSCs based on PV‐BT, DP‐BT, and TP‐BT reached 0.26%, 0.39%, and 0.52%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The results indicate that TP‐BT is a promising photovoltaic polymer for PSCs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3861–3871, 2007  相似文献   

2.
Two novel porphyrin‐based D‐A conjugated copolymers, PFTTQP and PBDTTTQP , consisting of accepting quinoxalino[2,3‐b′]porphyrin unit and donating fluorene or benzo[1,2‐b:4,5‐b′]dithiophene unit, were synthesized, respectively via a Pd‐catalyzed Stille‐coupling method. The quinoxalino[2,3‐b′]porphyrin, an edge‐fused porphyrin monomer, was used as a building block of D‐A copolymers, rather than the simple porphyrin unit in conventional porphyrin‐based photovoltaic polymers reported in literature, to enhance the coplanarity and to extend the π‐conjugated system of polymer main chains, and consequently to facilitate the intramolecular charge transfer (ICT). The thermal stability, optical, and electrochemical properties as well as the photovoltaic characteristics of the two polymers were systematically investigated. Both the polymers showed high hole mobility, reaching 4.3 × 10?4 cm2 V?1 s?1 for PFTTQP and 2.0 × 10?4 cm2 V?1 s?1 for PBDTTTQP . Polymer solar cells (PSCs) made from PFTTQP and PBDTTTQP demonstrated power conversion efficiencies (PCEs) of 2.39% and 1.53%, both of which are among the highest PCE values in the PSCs based on porphyrin‐based conjugated polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

3.
A set of three donor‐acceptor conjugated (D‐A) copolymers were designed and synthesized via Stille cross‐coupling reactions with the aim of modulating the optical and electronic properties of a newly emerged naphtho[1,2‐b:5,6‐b′]dithiophene donor unit for polymer solar cell (PSCs) applications. The PTNDTT‐BT , PTNDTT‐BTz , and PTNDTT‐DPP polymers incorporated naphtho[1,2‐b:5,6‐b′]dithiophene ( NDT ) as the donor and 2,2′‐bithiazole ( BTz ), benzo[1,2,5]thiadiazole ( BT ), and pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione ( DPP ), as the acceptor units. A number of experimental techniques such as differential scanning calorimetry, thermogravimetry, UV–vis absorption spectroscopy, cyclic voltammetry, X‐ray diffraction, and atomic force microscopy were used to determine the thermal, optical, electrochemical, and morphological properties of the copolymers. By introducing acceptors of varying electron withdrawing strengths, the optical band gaps of these copolymers were effectively tuned between 1.58 and 1.9 eV and their HOMO and LUMO energy levels were varied between ?5.14 to ?5.26 eV and ?3.13 to ?3.5 eV, respectively. The spin‐coated polymer thin film exhibited p‐channel field‐effect transistor properties with hole mobilities of 2.73 × 10?3 to 7.9 × 10?5 cm2 V?1 s?1. Initial bulk‐heterojunction PSCs fabricated using the copolymers as electron donor materials and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as the acceptor resulted in power conversion efficiencies in the range of 0.67–1.67%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948–2958  相似文献   

4.
A novel conjugated polymer, poly(thienylene‐vinylene‐thienylene) with cyano substituent ( CN‐PTVT ) was synthesized via Stille coupling for the application in air stable field‐effect transistor and polymer solar cell. The polymer was characterized by 1H NMR, elemental analysis, UV‐vis absorption and photoluminescence spectroscopy, TGA, cyclic voltammetry and XRD analysis. CN‐PTVT exhibits a good thermal stability with 5% weight loss at 306 °C. The FET hole mobility of the polymer reached 5.9 × 10?3 cm2 V?1 s?1 with Ion/Ioff ratio of 4.9 × 104, which is one of the highest performance among the air‐stable amorphous polymers. The polymer solar cell based on CN‐PTVT as donor and PCBM as acceptor shows a relatively high open‐circuit voltage of 0.82 V and a power conversion efficiency of 0.3% under the illumination of AM1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4028–4036, 2009  相似文献   

5.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   

6.
A series of low bandgap conjugated polymers consisting of benzothiadiazole alternating with dithienothiophene (DTT) or dithienopyrrole (DTP) unit with or without 3‐alkylthiophene bridge have been synthesized. Effect of the fused rings and 3‐alkylthiophene bridge on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers have been investigated. These polymers show broad absorption extending from 300 to 1000 nm with optical bandgaps as low as 1.2 eV; the details of which can be varied either by incorporating 3‐alkylthiophene bridge or by replacing DTT with DTP. The LUMO levels (?2.9 to ?3.3 eV) are essentially unaffected by the specific choice of donor moiety, whereas the HOMO levels (?4.6 to ?5.6 eV) are more sensitive to the choice of donor. The DTT and DTP polymers with 3‐alkylthiophene bridge were found to exhibit hole mobilities of 8 × 10?5 and 3 × 10?2 cm2 V?1 s?1, respectively, in top‐contact organic field‐effect transistors. Power conversion efficiencies in the range 0.17–0.43% were obtained under simulated AM 1.5, 100 mW cm?2 irradiation for polymer solar cells using the DTT and DTP‐based polymers with 3‐alkylthiophene bridge as donor and fullerene derivatives as acceptor. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5498–5508, 2009  相似文献   

7.
A set of novel conjugated polyfluorene co‐ polymers, poly[(9,9′‐didecylfluorene‐2,7‐diyl)‐co‐(4,7′‐di‐2‐thienyl‐ 2′,1′,3′‐benzothiadiazole‐5,5‐diyl)‐co‐(pyrene‐1,6‐diyl)], are synthesized via Pd(II)‐mediated polymerization from 2,7‐bis(4′,4′,5′, 5′‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)‐9,9′‐di‐n‐decylfluorene, 4, 7‐di(2‐bromothien‐5‐yl)‐2,1,3‐benzothiadiazole, and 1,6‐dibromopyrene with a variety of monomer molar ratios. The field‐effect carrier mobilities and optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The hole mobilities of the copolymers are found to be in the range 7.0 × 10?5 ? 8.0 × 10?4 cm2 V?1 s?1 and the on/off ratios were 8 × 103 ? 7 × 104. Conventional polymer solar cells (PSCs) with the configuration ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al are fabricated. Under optimized conditions, the polymers display power conversion efficiencies (PCEs) for the PSCs in the range 1.99–3.37% under AM 1.5 illumination (100 mW cm?2). Among the four copolymers, P2, containing a 2.5 mol % pyrene component incorporated into poly[9,9′‐didecylfluorene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PFDTBT) displays a PCE of 3.37% with a short circuit current of 9.15 mA cm?2, an open circuit voltage of 0.86 V, and a fill factor of 0.43, under AM 1.5 illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

9.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

10.
Four novel two‐dimensional (2D) donor–acceptor (D‐A) type copolymers with different conjugated side chains, P1 , P2 , P3 , and P4 (see Fig. 1 ), are designed and synthesized for the application as donor materials in polymer solar cells (PSCs). To the best of our knowledge, there were few reports to systematically study such 2D polymers with D‐A type main chains in this area. The optical energy band gaps are about 2.0 eV for P1 – P3 and 1.67 eV for P4 . PSC devices using P1 – P4 as donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor in a weight ratio of 1:3 were fabricated and characterized to investigate the photovoltaic properties of the polymers. Under AM 1.5 G, 100 mA/cm2 illumination, a high open‐circuit voltage (Voc) of 0.9 V was recorded for P3 ‐based device due to its low HOMO level, and moderate fill factor was obtained with the best value of 58.6% for P4 ‐based device, which may mainly be the result of the high hole mobility of the polymers (up to 1.82 × 10?3 cm2/V s). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Networked polymers that had poly(ethylene glycol) (PEG) chains and lithium sulfonylimide salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonyl‐trifluoromethanesulfonylimide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained flexible self‐standing networked polymer films showed high thermal and mechanical stability with relatively high ionic conductivity. The room temperature ionic conductivity under a dry condition was in the range of 10?5 ~ 10?4 S m?1, which is one order of magnitude higher than the corresponding networked polymers having lithium sulfonate salt structures (10?6 ~ 10?5 S m?1). The film sample became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The sample swollen in PC showed higher ionic conductivity (7.2 × 10?3 S m?1 at room temperature), and the sample swollen in 1.0 M LiTFSI/PC showed much higher ionic conductivity (8.2 × 10?1 S m?1 at room temperature). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A novel fused ladder alternating D–A copolymer, PIDT–DPP, with alkyl substituted indacenodithiophene (IDT) as donor unit and diketopyrrolopyrrole (DPP) as acceptor unit, was designed and synthesized by Pd‐catalyzed Stille‐coupling method. The copolymer showed good solubility and film‐forming ability combining with good thermal stability. PIDT–DPP exhibited a broad absorption band from 350 to 900 nm with an absorption peak centered at 735 nm. The optical band gap determined from the onset of absorption of the polymer film was 1.37 eV. The highest occupied molecular orbital level of the polymer is as deep as ?5.32 eV. The solution‐processed organic field‐effect transistor (OFETs) was fabricated with bottom gate/top contact geometry. The highest FET hole mobility of PIDT–DPP reached 0.065 cm2 V?1 s?1 with an on/off ratio of 4.6 × 105. This mobility is one of the highest values for narrow band gap conjugated polymers. The power conversion efficiency of the polymer solar cell based on the polymer as donor was 1.76% with a high open circuit voltage of 0.88 V. To the best of our knowledge, this is the first report on the photovoltaic properties of alkyl substituted IDT‐based polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A series of modified thiophene groups containing PPV‐based semiconducting materials, poly[(2,5‐bis(octyloxy)‐1,4‐phenylenevinylene)‐alt‐(2,2′bithienylenevinylene)] ( PPBT ), poly[(2,5‐bis(octyloxy)‐1,4‐phenylenevinylene)‐alt‐(5,5‐thiostilylenevinylene)] ( PPTVT ), have been synthesized through a Horner coupling reaction. From the FTIR and 1H NMR spectroscopy, the configuration of the vinylene groups in the polymers was all trans (E) geometry. The weight‐average molecular weights (Mw) of PPBT and PPTVT were found to be 11,700 and 11,800, with polydispersity indices of 2.51 and 2.53, respectively. PPBT and PPTVT thin films exhibit UV–visible absorption maxima at 538 and 558 nm, respectively, and the strong absorption shoulder peaks at 578 and 602 nm, respectively. Solution processed field‐effect transistors (FET) fabricated using all the polymers showed p‐type OTFT characteristics. The field‐effect mobility of the PPTVT was obtained up to 2.3 × 10?3 cm2 V?1 s?1, an on/off ratio of 1.0 × 105 with ambient air stability. Studies of the atomic force microscopy (AFM) and X‐ray diffraction (XRD) analysis of the polymer thin films revealed that all the polymers were amorphous structure. The greater planarity and rigidity of PPTVT compared to PPBT results in elongation of conjugation length and better π–π stacking of polymer chains in amorphous region, which leads to improved FET performance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 111–120, 2009  相似文献   

14.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Oligo(oxyethylene) chains cross‐linked 2,2’‐bithiophene (BT‐E5‐BT) has been synthesized successfully. A free‐standing copolymer film based on BT‐E5‐BT and 3,4‐ethylenedioxythiophene (P(BT‐E5‐BT‐co‐EDOT)) has been synthesized by electrochemical polymerization. The electrical conductivity of P(BT‐E5‐BT‐co‐EDOT) copolymer (16 S m?1) has improved by four orders of magnitude compared to the homopolymer of BT‐E5‐BT (P(BT‐E5‐BT), 5 × 10?3 S m?1) at room temperature. Both homopolymer and copolymer films exhibit well‐defined redox and satisfied coloration efficiency. Spectroelectrochemistry studies indicate that the P(BT‐E5‐BT‐co‐EDOT) has a lower band gap in the range of 1.83–1.90 eV and shows more plentiful electrochromic colours (green, blue, purple and salmon pink) compared with the homopolymer P(BT‐E5‐BT). The Copolymer P(BT‐E5‐BT‐co‐EDOT) shows the moderate optical contrast (26% of 480 nm) and coloration efficiency (205.41 cm?1 C?2). The copolymer method provides a novel way to fabricate a free‐standing organic electrochromic device. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1583–1592  相似文献   

17.
Thienoisoindigo (TIIG) has emerged as an attractive building block for high‐performance organic optoelectronic devices. Here we report the first synthesis of a series of π‐conjugated TIIG‐based small molecules and alternating copolymers via direct C–H arylation, which enables the efficient synthesis without use of flammable and toxic orgametallic reagents in fewer steps compared Suzuki and Stille coupling. The direct arylation coupling between TIIG and two respective mono‐bromo aryl reactants clearly shows that the α‐H is more reactive than the β‐H in the thiophene unit of TIIG. The high regioselectivity of TIIG monomer warrants the successful synthesis of high‐quality alternating copolymers with minimal structural defects. PTIIG‐BT polymer synthesized via direct arylation polymerization (DAP) showed comparable molecular weight and hole mobility than the same polymer previously synthesized via Suzuki coupling. Moreover, the two new polymers (PTIIG‐TF and PTIIG‐2FBT) synthesized via DAP showed hole mobility up to 10?3 cm2 V?1 s?1 in FET devices fabricated and tested under ambient conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2015–2031  相似文献   

18.
Novel conjugated polymers containing 3,9‐ or 2,9‐linked carbazole units in the main chain were synthesized by the polycondensation of ethynyl‐ and iodo‐substituted 9‐arylenecarbazolylene monomers, and their optical and electrical properties were studied. Polymers with weight‐average molecular weights of 3400–12,000 were obtained in 76–99% yields by the Sonogashira coupling polycondensation in piperidine or tetrahydrofuran (THF)/piperidine at 30 °C for 48 h. All the 3,9‐linked polymers absorbed light around 300 nm. The para‐phenylene‐linked polymer also absorbed light around 350 nm, while meta‐phenylene‐linked one did not. The 3,9‐linked polymers absorbed light at a wavelength longer than the 2,9‐linked one. The polymers emitted blue fluorescence with high quantum yields (0.21–0.78) upon excitation at the absorption maxima. The polymers were oxidized around 0.6 V, and reduced around 0.5 V. Poly( 1 ) showed the dark conductivity of 3.7 × 10?11 S/cm (103 V/cm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3506–3517, 2009  相似文献   

19.
A series of organic/inorganic hybrid star‐shaped polymers were synthesized by atom transfer radical polymerization using 3‐(3,5,7,9,11,13,15‐heptacyclohexyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate (MA‐POSS) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomers and octakis(2‐bromo‐2‐methylpropionoxypropyldimethylsiloxy)octasilsesquioxane as an initiator. Star‐shaped polymers with methyl methacrylate (MMA) and PEGMA moieties were also prepared for comparison purposes. Dimensionally stable freestanding film could be obtained from the hybrid star‐shaped polymer containing 26 wt % of MA‐POSS moieties although its glass transition temperature is very low, ?60.9 °C. As a result, the hybrid star‐shaped polymer electrolyte containing lithium bis(trifluoromethanesulfonyl)imide showed ionic conductivities (1.75 × 10?5 S/cm at 30 °C), which were two orders of magnitude higher than those of the star‐shaped polymer electrolyte with MMA moieties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号