首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
化学   8篇
力学   1篇
物理学   4篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2008年   2篇
排序方式: 共有13条查询结果,搜索用时 109 毫秒
1.
2.
We have achieved, for the first time to our knowledge, lasing in a new type of telluride-tungstate glass host doped with neodymium: Nd3+:(0.8)TeO2-(0.2)WO3. Lasing was obtained at 1065 nm with two samples containing 0.5 mol% and 1.0 mol% Nd2O3. During gain-switched operation, slope efficiencies of 12% and 10% were obtained with the 0.5 mol% and 1.0 mol% doped samples, respectively, at a pulse repetition rate of 1 kHz. Judd-Ofelt analysis was further employed to determine the emission cross section σe at 1065 nm from the absorption spectra and lifetime data. The emission cross section from the Judd-Ofelt analysis came to 3.23 ± 0.09 × 10−20 cm2, in reasonable agreement with the value of 2.0 ± 0.13 × 10−20 cm2 obtained from the analysis of laser threshold data.  相似文献   
3.
Abstract

Two novel thiadiazoloquinoxaline and benzodithiophene (BDT) bearing copolymers were designed and synthesized. Different BDT units (alkoxy and thiophene substituted) were used as donor materials and the effect of alkoxy and thiophene substitution on the electrochemical, spectroelectrochemical and photovoltaic properties were investigated. Both polymers exhibited low oxidation potentials at around 0.90 V and low optical band gaps at around 1.00?eV due to the insertion of electron poor thiadiazoloquinoxaline unit into the polymer backbone. Both P1 (poly-6,7-bis(3,4-bis(decyloxy)phenyl)-4-(4,8-bis(nonan-3-yloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) and P2 (poly- 4-(4,8-bis(5-(nonan-3-yl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophen-2-yl)-6,7-bis(3,4-bis(decyloxy)phenyl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) exhibited multichromic behavior with different tones of greenish yellow and gray in the neutral and fully oxidized states, respectively. In addition, both polymers revealed very high optical contrasts (~87%) in the NIR region which make these promising polymers good candidates for NIR applications. Finally, in order to explore the organic photovoltaic performances, P1 and P2 were mixed with PC71BM in the active layer of organic solar cells (OSCs) by conventional device structure. As a result P1 and P2 based devices revealed power conversion efficiencies (PCEs) of 0.33% and 0.60% respectively. However, the additive treatment enhanced PCE from 0.49 to 0.73% for P2 based devices.  相似文献   
4.
Four new 2,1,3‐benzooxadiazole‐based donor–acceptor conjugated polymers, namely poly{9‐(9‐heptadecanyl)‐9H‐carbazole‐alt‐5,6‐bis(octyloxy)‐4,7‐di(selenophen‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PSBSC), poly{9‐(9‐heptadecanyl)‐9H‐carbazole‐alt‐5,6‐bis(octyloxy)‐4,7‐di(furan‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PFBFC), poly{9,9‐dioctyl‐9H‐fluorene‐alt‐5,6‐bis(octyloxy)‐4,7‐di(selenophen‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PSBSFL), and poly{9,9‐dioctyl‐9H‐fluorene‐alt‐5,6‐bis(octyloxy)‐4,7‐di(furan‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PFBFFL), were synthesized via Stille polycondensation reaction. All polymers were found to be soluble in common organic solvents such as chloroform, tetrahydrofuran, and chlorobenzene. Their structures were verified by 1H‐NMR and the molecular weights were determined by gel permeation chromatography (GPC). The polymer films exhibited broad absorption bands. Among all polymers, photovoltaic cells based on the device structure of ITO/PEDOT:PSS/PSBSC:PC71BM(1:3, w/w)/LiF/Al revealed an open‐circuit voltage of 0.62 V, a short circuit current of 7.63 mA cm?2 and a power conversion efficiency of 1.89%. This work demonstrates a good example for tuning absorption range, energy level, and photovoltaic properties of the polymers with different spacers and donor units can offer a simple and effective method to improve the efficiency of PSCs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2459–2467  相似文献   
5.
In this study, hybrid nanocomposites were synthesized by photo-crosslinking of poly (ethylene glycol) methyl ether acrylate/poly (ethylene glycol) diacrylate monomer system using 2- (carboxymethoxy) thioxanthone and POSS-(PEG2000)8. Additionally, AgNO3 was added to this formulation and in situ formation of silver nanoparticles onto hybrid nanocomposites were achieved in one-step. UV–Vis spectroscopy technique was used as a very useful tool for surface plasmon resonance band detection of silver nanoparticles. In addition to thermogravimetric analyses which were performed in nitrogen atmosphere to determine the thermal stability of the nanocomposites, dynamic light scattering, and scanning electron microscopy techniques were also used for size and morphology of silver nanoparticles in a hybrid network. TGA analyses proved that even the addition of a very low amount of POSS-(PEG2000)8 made noteworthy contribution to thermal stability especially in the presence of silver nanoparticles in the hybrid network. The swelling capacities of the prepared films were examined at 1, 3 and 24 h in phosphate buffer solution (pH = 7.4). It was found that film containing only POSS-(PEG2000)8 had the highest swelling ratio in the shortest time.  相似文献   
6.
The GaP-based dilute nitride direct band gap material Ga(NAsP) is gaining importance due to the monolithic integra- tion of laser diodes on Si microprocessors. The major advantage of this newly proposed laser material system is the small lattice mismatch between GaP and Si. However, the large threshold current density of these promising laser diodes on Si substrates shows that the carrier leakage plays an important role in Ga(NAsP)/GaP QW lasers. Therefore, it is necessary to investigate the band alignment in this laser material system. In this paper, we present a theoretical investigation to optimize the band alignment of type-I direct band gap GaNxAsyP1-x-y/GaP QWs on GaP substrates. We examine the effect of nitrogen (N) concentration on the band offset ratios and band offset energies. We also provide a comparison of the band alignment of type-I direct band gap GaNxAsyP1-x-y/GaP QWs with that of the GaNxAsyP1-x-y/Al2Ga1-2P QWs on GaP substrates. Our theoretical calculations indicate that the incorporations of N into the well and AI into the barrier improve the band alignment compared to that of the GaAsP/GaP QW laser heterostructures.  相似文献   
7.
In this study, two new conjugated polymers were synthesized including benzotriazole (BTz) as the acceptor unit and selenophene as the π bridge donor segment. These acceptors were coupled with fluorene and carbazole via Suzuki condensation reactions. Electrochemical band gaps were calculated as 2.45 eV for P1 and 2.40 eV for P2. Electrochemical and optical studies of polymers indicate that both polymers are promising candidates for organic solar cell (OSC) and polymer organic light emitting diode (PLED) applications since they have suitable HOMO-LUMO energy levels and appropriate absorption and emission band ranges. Light emitting properties of synthesized polymers were investigated and the highest luminance value was found as 6608cd/m2 for P1 at 8 V. Photovoltaic properties of polymers were investigated and the optimized device based on P2 showed 1.75% power conversion efficiency for P2 under AM 1.5 G illumination at 100 mW/cm2.  相似文献   
8.
This paper intends to demonstrate the feasibility of a miniaturized multi-purpose metamaterial sensor that can be effectively used for chemical, biological and pressure sensing in microwave and terahertz applications. This novel sensor design makes use of the double-sided split ring resonator (DSRR) topology that is modified to have an additional sensing medium sandwiched between two identical broadside coupled SRR unit cells. The resonance frequency of the resulting DSRR sensor shifts as the dielectric permittivity or thickness of this interlayer medium changes in response to variations in an environmental parameter such as temperature, humidity, density, concentration or pressure. As a proof of concept study, both numerical and experimental results are presented with very good agreement for a multi-functional miniaturized metamaterial sensor prototype operating in X-band. Simulations for three different real-life scenarios are also presented for this sensor topology to demonstrate a moisture sensor, a density sensor and a temperature sensor with very good sensitivities where the interlayer medium is occupied by sawdust, silica aerogel and seawater, respectively.  相似文献   
9.
Yttrium oxide nanopowder was prepared by a novel technique using an alginate biopolymer as a precursor. The technique is based on thermal decomposition of an yttrium alginate gel, which is produced in the form of beads by ionic gelation between the yttrium solution and sodium alginate. The effect of post-annealing temperature on the particle size of the nanocrystals was investigated at various tempera- tures. The products were characterized using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The size of the nanocrystalline Y2O3 particles varied from 22.7 to 38.7 nm, depending on the annealing temperature and time. The grain size distribution (GSD) was also determined. The GSD became more non-symmetrical as the annealing temperature increased, and the width of the distributions for the powders produced using the alginate method was less affected by heat treatment. This alginate method was compared with the conventional glycine combustion method, on the basis of particle size. The particles obtained using the proposed technique were smaller than those obtained using the combustion method. Alginate-assisted thermal decomposition is therefore an easy and cost-effective method for preparing nanosized Y2O3 crystals.  相似文献   
10.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号