首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
“Electroless” oxidation, at room temperature, of boron-doped diamond (BDD) films with oxidizing agents as Ce4+, MnO4?, H2O2 or S2O82? is an efficient way to transform hydrogen terminations (C-H) into oxygen ones (C-O). To investigate the oxidation mechanism of diamond surfaces through these open current potential (OCP) processes, we study in the present work the reduction mechanisms of the different oxidizing agents at BDD surfaces. Current-voltage measurements were performed using a rotating disk electrode of diamond immersed in a solution containing one of the species. Two different mechanisms were evidenced: an electrochemical for Ce4+ and MnO4? and a chemical one based on the production of radicals under light exposure for H2O2 and S2O82?.  相似文献   

2.
To predict hydroxyl‐radical‐initiated degradation of new proton‐conducting polymer membranes based on sulfonated polyetherketones (PEK) and polysulfones (PSU), three nonfluorinated aromatics are chosen as model compounds for EPR experiments, aiming at the identification of products of HO.‐radical reactions with these monomers. Photolysis of H2O2 was chosen as the source of HO. radicals. To distinguish HO.‐radical attack from direct photolysis of the monomers, experiments were carried out in the presence and absence of H2O2. A detailed investigation of the pH dependence was performed for 4,4′‐sulfonylbis[phenol] ( SBP ), bisphenol A (= 4,4′‐isopropylidenebis[phenol]; BPA ), and [1,1′‐biphenyl]‐4,4′‐diol ( BPD ). At pH ≥ pKA of HO. and H2O2, reactions between the model compounds and O2.? or 1O2 are the most probable ways to the phenoxy and ‘semiquinone’ radicals observed in this pH range in our EPR spectra. A large number of new radicals give evidence of multiple hydroxylation of the aromatic rings. Investigations at low pH are particularly relevant for understanding degradation in polymer‐electrolyte fuel cells (PEFCs). However, the chemistry depends strongly on pH, a fact that is highly significant in view of possible pH inhomogeneities in fuel cells at high currents. It is shown that also direct photolysis of the monomers leads to ‘semiquinone’‐type radicals. For SBP and BPA , this involves cleavage of a C? C bond.  相似文献   

3.
Hydroxylation of benzene by molecular oxygen (O2) occurs efficiently with 10‐methyl‐9,10‐dihydroacridine (AcrH2) as an NADH analogue in the presence of a catalytic amount of Fe(ClO4)3 or Fe(ClO4)2 with excess trifluoroacetic acid in a solvent mixture of benzene and acetonitrile (1:1 v/v) to produce phenol, 10‐methylacridinium ion and hydrogen peroxide (H2O2) at 298 K. The catalytic oxidation of benzene by O2 with AcrH2 in the presence of a catalytic amount of Fe(ClO4)3 is started by the formation of H2O2 from AcrH2, O2, and H+. Hydroperoxyl radical (HO2.) is produced from H2O2 with the redox pair of Fe3+/Fe2+ by a Fenton type reaction. The rate‐determining step in the initiation is the proton‐coupled electron transfer from Fe2+ to H2O2 to produce HO. and H2O. HO. abstracts hydrogen rapidly from H2O2 to produce HO2. and H2O. The Fe3+ produced was reduced back to Fe2+ by H2O2. HO2. reacts with benzene to produce the radical adduct, which abstracts hydrogen from AcrH2 to give the corresponding hydroperoxide, accompanied by generation of acridinyl radical (AcrH.) to constitute the radical chain reaction. Hydroperoxyl radical (HO2.), which was detected by using the spin trap method with EPR analysis, acts as a chain carrier for the two radical chain pathways: one is the benzene hydroxylation with O2 and the second is oxidation of an NADH analogue with O2 to produce H2O2.  相似文献   

4.
The photolysis of strong alkaline (pH>12.7) solutions of H2O2 yields O·−, which in the presence of molecular oxygen forms the ozonide radical ion, O3·−. A detailed kinetic study on the reaction mechanisms involved during formation and decay of O3·− radical ions in these solutions, in the presence and absence of added O·−/HO· scavengers is reported. In order to obtain a complete interpretation of the experimental data, kinetic computer simulations were done using a complete set of reactions. A very good agreement between experimental and computer simulated data is obtained. The following simplified mechanism accounts for the observed first-order decay of O3·− in alkaline hydrogen peroxide solutions: O·− + O2 → O3·− O3·− → O·− + O2 O·− + S → OH· + S → HO· + HO2 → O2·− + H2O O·− + HO2 → O2·− + HO with S: O·−/HO· scavengers. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
Acyclic and cyclic structures and total energies of radicals HO4⋅ CH3O4⋅ and C2H5O4· were calculated by ab initio quantum chemical methods. Depending on the computational method and basis sets used, the cyclic conformer of the HO4· radical is 4.8 to 7.3 kJ mol-1 more stable than the acyclic one. For the first two representatives of the homologous series of alkyl tetraoxyl radicals, CH3O4· and C2H5O4, MP2/6-311++G** calculations predict insignificant energy differences (1.2 kJ mol-1) between six-membered cyclic and acyclic conformers. Apparently, these radicals can exist in both forms.  相似文献   

6.
The process of reduction of Cr6+ ions (solution of potassium dichromate, K2Cr2O7) in a water cathode was studied during a DC discharge in air. The concentration range of Cr6+ was (5.7–19) ×10?5 mol/l and discharge current range was 20–80 mA. Cr6+ ions were shown to be reversibly reduced under a discharge action. The equilibrium degree of reduction increased with increasing initial concentration of the solution at fixed discharge current. At fixed initial concentration the reduction degree increased with increasing discharge current. The reduction degrees so obtained were 0.34–0.84. A kinetic scheme of the processes taking place in a solution was proposed. The calculated data obtained as a result of application of this scheme described well the experimental results on Cr6+ kinetics. The main processes of Cr6+ reduction and Cr3+ oxidation were revealed. HO 2 · radicals and hydrogen peroxide were shown to be responsible for Cr6+ reduction whereas ·OH radicals and O2 molecules provide the reverse process of Cr3+ oxidation to Cr6+. The mechanism of action of phenol additives improving the process efficiency is discussed. The efficiency of phenol action as a radical scavenger was shown to be determined with its mass-transfer to the reaction area rather than chemical reaction rate.  相似文献   

7.
The emission spectra of hydrogen-oxygen and hydrogen-air flames at 0.1–1 atm exhibit a system of bands between 852 and 880 nm, which is assigned to the H2O2 molecule vibrationally excited into the overtone region. This molecule results from the reaction HO 2 · + HO 2 · → H2O 2 v + O2. The overtone region also contains bands at 670 and 846 nm, which are assigned to the vibrationally excited HO 2 · radical. This radical results from the reaction between H and O2. The HO 2 · radicals resulting from H2 or D2 combustion inhibited by small amounts of propylene are initially in vibrationally excited states. The role of vibrational deactivation is discussed.  相似文献   

8.
The complete mineralization of organic pollutants present in wastewater is usually achieved via thermally activated oxygen/air. This process occurs at high temperatures and pressures (300 °C, 200 atm) and often gives small amount of acetic acid as a final product. In this work, we demonstrate using acetic acid as a model compound that organic molecules can be activated electrochemically such that they react at room temperature with oxygen, resulting in mineralization of even acetic acid present in 1 M HClO4 supporting electrolyte. This electrochemically induced activation occurs during anodic polarization of boron-doped diamond electrodes (BDD) in air/oxygen-saturated solutions. The direct evidence for this process was found during electro-oxidation of acetic acid saturated with isotopically labelled 18O2 resulting in evolution of C18O2 and C16O18O. We suggest that the mechanism of activation on BDD is initiated by hydroxyl radicals formed on the electrode surface.  相似文献   

9.
Indirect electrooxidation of phenol, formaldehyde, and maleic acid in cells with and without a cation-exchange membrane, with a platinum anode and a gas-diffusion carbon black cathode, which generates hydrogen peroxide from molecular oxygen, proceeds with high efficiency and various oxidation depths, which depend on the intermediate nature: the process involving HO 2 - occurs selectively and yields target products, while the formation of HO2 · and HO· leads to the destruction of organic compounds to CO2 and H2O.  相似文献   

10.
Aerobic oxidation of toluene (PhCH3) is investigated by complementary experimental and theoretical methodologies. Whereas the reaction of the chain‐carrying benzylperoxyl radicals with the substrate produces predominantly benzyl hydroperoxide, benzyl alcohol and benzaldehyde originate mainly from subsequent propagation of the hydroperoxide product. Nevertheless, a significant fraction of benzaldehyde is also produced in primary PhCH3 propagation, presumably via proton rather than hydrogen transfer. An equimolar amount of benzyl alcohol, together with benzoic acid, is additionally produced in the tertiary propagation of PhCHO with benzylperoxyl radicals. The “hot” oxy radicals generated in this step can also abstract aromatic hydrogen atoms from PhCH3, and this results in production of cresols, known inhibitors of radical‐chain reactions. The very fast benzyl peroxyl‐initiated co‐oxidation of benzyl alcohol generates HO2. radicals, along with benzaldehyde. This reaction also causes a decrease in the overall oxidation rate, due to the fast chain‐terminating reaction of HO2. with the benzylperoxyl radicals, which causes a loss of chain carriers. Moreover, due to the fast equilibrium PhCH2OOH+HO2.?PhCH2OO.+H2O2, and the much lower reactivity of H2O2 compared to PhCH2OOH, the fast co‐oxidation of the alcohol means that HO2. gradually takes over the role of benzylperoxyl as principal chain carrier. This drastically changes the autoxidation mechanism and, among other things, causes a sharp decrease in the hydroperoxide yield.  相似文献   

11.
A detailed theoretical study on the reaction mechanisms for the formations of H2O2 + 3O2 from the self-reaction of HO2 radicals under the effect of NH3, H3N···H2O, and H2SO4 catalysts was performed using the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ method. The rate constant was computed using canonical variational transition state theory (CVT) with small curvature tunneling (SCT). Our results indicate that NH3-, H3N···H2O-, and H2SO4-catalyzed reactions could proceed through both one-step and stepwise routes. Calculated rate constants show that the catalyzed routes in the presence of the three catalysts all prefer stepwise pathways. Compared to the catalytic efficiency of H2O, the efficiencies of NH3, H3N···H2O, and H2SO4 are much lower due to their smaller relative concentrations. The present results have provided a definitive example of how basic and acidic catalysts influence the atmospheric reaction of HO2 + HO2 → H2O2 + 3O2. These results further encourage one to consider the effects of basic and acidic catalysts on the related atmospheric reactions. Thus, the present investigation should have broad implications in the gas-phase reactions of the atmosphere.  相似文献   

12.
Electrochemical oxidation of phenol was studied using Ti/IrO2/RuO2 anode and a carbon/polytetrafluoroethylene (C/PTFE) O2-fed cathode which generated hydrogen peroxide (H2O2) by the reduction of oxygen in the undivided cell and the divided cell with a cotton diaphragm. For degradation mechanism of phenol on the cathode and anode, two kinds of cells are similar. However, the basic condition of the cathodic compartment in the divided cell was prone to H2O2 changed to and HO 2 and HO·. So, the mineralization of phenol in the divided cell was better than that in the undivided cell.__________From Elektrokhimiya, Vol. 41, No. 7, 2005, pp. 810–816.Original English Text Copyright © 2005 by Wang Hui, Yu Xiujuan, Wu Lan, Wang Qiang, Sun Dezhi.The text was submitted by the authors in English.  相似文献   

13.
The influence on the N2O photocurrent of homogeneous competition for OH radicals between two organic solutes which form (as the result of hydrogen abstraction) radicals, one of which is reduced by the electrode, the other being oxidised, is considered theoretically. Such competition can be employed to investigate the kinetics of hydrogen abstraction in a case in which uncompetitive homogeneous destruction of OH radicals by a solute has no effect on the photocurrent. The influence of incomplete oxidation of alcohol radicals when a light pulse of short duration is employed is discussed, together with complications caused by adsorption of the organic solute. Competition for OH radicals between phenol and methanol points to a rate constant for H abstraction from phenol of ca. 2.8 × 109 l mol?1 s?1 and to rapid heterogeneous reduction of most of the C6H4OH radicals throughout the accessible potential range.  相似文献   

14.
The thermal reaction of propene was examined around 800 K in the presence of less than 20% oxygen. At initial time, the production of H2, CH4, C2H4, C2H6, allene, C3H8, 1,3-butadiene, butenes, 3- and 4-methylcyclopentene, a mixture of 1,4- and 1,5-hexadienes, methylcyclopentane (or dimethylcyclobutane), 4-methylpent-1-ene, and hex-1-ene, was observed along with hydrogen peroxide, CO, and small quantities of ethanal and CO2. Oxygen increases the initial production of hydrogen and of most hydrocarbons and, particularly, that of C6 dienes and of cyclenes. However, the production of allene, methylcyclopentane (or dimethylcyclobutane), and 4-methylpent-1-ene is practically not affected. A kinetic study confirms the mechanism proposed for the thermal reaction of propene. Formation of allene, thus, involves a four-center-unimolecular dehydrogenation of propene, that of 4-methylpent-1-ene is explained by an ene bimolecular reaction while methylcyclopentane (or dimethylcyclobutane) probably arises from a bimolecular process involving a biradical intermediate. Other products arise from a conventional chain radical mechanism. A kinetic scheme is proposed in which chains are primarily initiated by the bimolecular step: C3H6+O2→HO2·+C3H5· which competes with the second-order initiation of propene pyrolysis. Since allene production is not affected by oxygen, it is concluded that allyl radicals are not dehydrogenated by oxygen; but they oxidize in a branching step involving allylperoxyl radicals; r. radicals other than methyl, and allyl are dehydrogenated according to the conventional process: r·+O2→unsaturated+HO2· and account for the production of a large excess of C6 diolefins, methylcyclopentenes, and hydrogen peroxide, when r. stands for C6H11, the allyl adduct. Hydrogen peroxide gives rise to a degenerate branching of chains. Based on the proposed scheme, a modeling of the reaction is shown to account fairly well for the concentration-time profiles. Rate constants of many steps are evaluated and discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 503–522, 1998  相似文献   

15.
The supported nano-TiO2 electrode was prepared by sol–gel and hydrothermal method, and the photoelectrocatalytic degradation of 4-chlorophenol (4-CP) under UV irradiation has been investigated to reveal the roles of hydroxyl radicals and dissolved oxygen species for TiO2-assisted photocatalytic reactions. The degradation kinetics, the formation and decay of intermediates, the isotopic tracer experiments with H2O18, the removal yield of total organic carbon and the formation of active radical species in the presence of oxygen or not were examined by HPLC, GC–MS, TOC and spin-trap ESR spectrometry. It was found that most of OH radicals in the primary hydroxylated intermediates derived from the oxidation of adsorbed H2O or HO by photo-holes in the electrochemically assisted TiO2 photocatalytic system. It also indicates that the enhancement in the separation efficiency of photogenerated charges by applying a positive bias (+0.5 V vs SCE) has little role in the following decomposition and mineralization of these hydroxylated intermediates in the absence of oxygen. According to above experimental results, the pathway of 4-CP photocatalytic degradation was deduced initially. Due to the combined effect of OH radicals and dissolved oxygen species, the hydroxylated 4-chlorphenol, via cis, cis-3-chloromuconic acid, was decomposed into low molecular weight acid and CO2.  相似文献   

16.
Atmospheric pressure rate coefficients for the loss of HO2, CH3O2, and C2H5O2 radicals to the wall of a ¼″ Teflon tube have been measured. In dry air, they are 2.8 ± 0.2 s−1 for HO2 and 0.8 ± 0.1 s−1 for both CH3O2 and C2H5O2 radicals. The rate coefficient for HO2 loss increases markedly with the relative humidity of the air; however, the organic radicals show no such dependence. These data are used in a kinetic model of the radical amplifier chemistry to investigate the reported sensitivity to water concentration. The increased wall loss accounts for only some of the observed water dependence, suggesting there is an unreported water contribution to the gas phase chemistry. Including the reaction of the HO2/water adduct with NO to yield HNO3 or HOONO into the mechanism is shown to provide a better simulation of the observed water dependence of the radical detector. This reaction would also be important in atmospheric chemistry as it provides an additional loss mechanism for both radicals and NOx. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 145–152, 1999  相似文献   

17.
Conditions for the formation of peroxyl radicals photosensitized by near-UV irradiation in frozen aqueous solutions of adenine containing 0.1 M NaCl (pH 4–7) are studied. Analysis of the EPR spectra shows that the systems under study contain two types of peroxyl radicals presumably classified earlier as O 2 and HO · . The effect of freezing methods on the production of the radicals is shown. The signal from O 2 predominates in the spectra of samples with open surfaces and is likely due to the reduction of adsorbed O2 molecules with photoejected electrons. The signal from HO 2 · could be due to photoinduced interaction between the sensitizer and solvent. Possible mechanisms of these processes are considered.  相似文献   

18.
The catalytic activity of diamond‐supported gold nanoparticle (Au/D) samples prepared by the deposition/precipitation method have been correlated as a function of the pH and the reduction treatment. It was found that the most active material is the one prepared at pH 5 followed by subsequent thermal treatment at 300 °C under hydrogen. TEM images show that Au/D prepared under optimal conditions contain very small gold nanoparticles with sizes below 2 nm that are proposed to be responsible for the catalytic activity. Tests of productivity using large phenol (50 g L ?1) and H2O2 excesses (100 g L ?1) and reuse gives a minimum TON of 458,759 moles of phenol degraded per gold atom. Analysis of the organic compounds extracted from the deactivated solid catalyst indicates that the poisons are mostly hydroxylated dicarboxylic acids arising from the degradative oxidation of the phenyl ring. By determining the efficiency for phenol degradation and the amount of O2 evolved two different reactions of H2O2 decomposition (the Fenton reaction at acidic pH values and spurious O2 evolution at basic pH values) are proposed for Au/D catalysis. The activation energy of the two processes is very similar (ranging between 30 and 35 kJ mol?1). By using dimethylsulfoxide as a radical scavenger and Ntert‐butyl‐α‐phenylnitrone as a spin trap under aerated conditions, the EPR spectrum of the expected PBN? OCH3 adduct was detected, supporting the generation of HO., characteristic of Fenton chemistry in the process. Phenol degradation, on the other hand, exhibits the same activation energy as H2O2 decomposition at pH 4 (due to the barrierless attack of HO. to phenol), but increases the activation energy gradually up to about 90 kJ mol?1 at pH 7 and then undergoes a subsequent reduction as the pH increases reaching another minimum at pH 8.5 (49 kJ mol?1).  相似文献   

19.
During the etching of AZ 1350 photoresist in O2 and O2/CF4 discharges, ground-state concentrations of atoms (O, F, and H), and small radicals (OH, HO2, RO2) were measured in the discharge afterglow by EPR spectroscopy. In the case of CF4/O2 discharges, the dependence of O and F atom concentrations on the etch time reflects both surfäce oxidation and fluorination reactions in accordance with existing etch models. In the case of high-rate resist etching in pure O2 discharges, high concentrations of product radicals (H, OH and HO2) were detected and compared with resist free O2/H2O discharges. Kinetic modeling of the afterglow reactions reveals that the mean lifetime and, accordingly, the diffusion length of the etchant species O(3P) is drastically reduced in rapid reactions with OH and HO2. The results are used to simulate both etch homogeneity and the loading effect in a simple etch model.  相似文献   

20.
Electrochemical oxidation of ammonia (NH3 and NH4 + ) on boron-doped diamond (BDD) electrode was studied using differential electrochemical mass-spectrometry (DEMS) and chronoamperometry. Electro-oxidation of ammonia induces inhibition of the oxygen evolution reaction (OER) due to adsorption of the ammonia oxidation products on the BDD surface. The inhibition of the OER enhances ammonia electro-oxidation, which becomes the main reaction. The amino radicals, formed during ammonia oxidation, trigger a reaction chain in which molecular oxygen dissolved in solution is involved in the ammonia electro-oxidation. Nitrogen, nitrous oxide, and nitrogen dioxide were detected as the ammonia oxidation products, with nitrogen being the main gaseous product of the oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号