首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Oxidative addition of diethyldichalcogenanes Et2E2 (E = S, Se, Te) to bis[bis(trimethylsilyl]amido]germylene and ‐stannylene M[N(SiMe3)2]2 (M = Ge, Sn) proceed with formation of the corresponding bis(ethylchalcogenato)germanes (Me3Si)2N)2Ge(EEt)2 [E = S ( 1 ), Se ( 2 ), Te ( 3 )] and ‐stannanes (Me3Si)2N)2Sn(EEt)2 [E = S ( 4 ), Se ( 5 ), Te ( 6 )]. The solid state structures of 1 – 6 were determined by single‐crystal X‐ray diffraction.  相似文献   

2.
Preparation, Characterization, and Structure of Functionalized Fluorophosphaalkenes of the Type R3E–P=C(F)NEt2 (R/E = Me/Si, Me/Ge, CF3/Ge, Me/Sn) P‐functionalized 1‐diethylamino‐1‐fluoro‐2‐phosphaalkenes of the type R3E–P=C(F)NEt2 [R/E = Me/Si ( 2 ), Me/Ge ( 3 ), CF3/Ge ( 4 ), Me/Sn ( 5 )] are prepared by reaction of HP=C(F)NEt2 ( 1 , E/Z = 18/82) with R3EX (X = I, Cl) in the presence of triethylamine as base, exclusively as Z‐Isomers. 2–5 are thermolabile, so that only the more stable representatives 2 and 4 can be isolated in pure form and fully characterized. 3 and 5 decompose already at temperatures above –10 °C, but are clearly identified by 19F and 31P NMR‐measurements. The Z configuration is established on the basis of typical NMR data, an X‐ray diffraction analysis of 4 and ab initio calculations for E and Z configurations of the model compound Me3Si–P=C(F)NMe2. The relatively stable derivative 2 is used as an educt for reactions with pivaloyl‐, adamantoyl‐, and benzoylchloride, respectively, which by cleavage of the Si–P bond yield the push/pull phosphaalkenes RC(O)–P=C(F)NEt2 [R = tBu ( 6 ), Ad ( 7 ), Ph ( 8 )], in which π‐delocalization with the P=C double bond occurs both with the lone pair on nitrogen and with the carbonyl group.  相似文献   

3.
Three new N‐heterocyclic germylenes of the type [Fe{(η5‐C5H4)NR}2Ge] ( 1R Ge) containing particularly bulky alkyl [R = 2‐adamantyl (Ad), 1,1,2,2‐tetramethylpropyl (Pr*)] or aryl substituents [R = 2,6‐diisopropylphenyl (Dipp)] were prepared and structurally characterized, in two cases (R = Ad, Dipp), by single‐crystal X‐ray diffraction. Together with the previously described homologues with R = trimethylsilyl (TMS), tert‐butyl (tBu), and mesityl (Mes) their oxidative addition reactions with S8 and Se8 were studied, which afforded compounds of the type [ 1R Ge(μ‐E)]2 (E = S, Se). The low solubility of most of these products severely hampered their purification and characterization. Nevertheless, their structural characterization by single‐crystal X‐ray diffraction was possible in six cases (E = S, R = Ad, Pr*; E = Se, R = Ad, Pr*, Mes, Dipp). No solubility problems were encountered in oxidative addition reactions with diphenyl diselenide, affording products of the type 1R Ge(SePh2)2, whose crystal structures could be determined in four cases (R = TMS, tBu, Mes, Dipp). Short intramolecular CH ··· Se contacts compatible with hydrogen bonds were observed for [ 1Ad Ge(μ‐Se)]2, [ 1Pr* Ge(μ‐Se)]2, and 1tBu Ge(SePh2)2.  相似文献   

4.
A double‐decker (DD) type selenidogermanate complex with C=O functionalized organic decoration, [(R1Ge4)Se6] ( 1 , R1 = CMe2CH2COMe), was synthesized by reaction of R1GeCl3 with Na2Se, and subsequently underwent a light‐induced transformation reaction to yield [Na(thf)2][(RGeIV)2(RGeIII)(GeIIISe)Se5] ( 2 ). Similar to the observations reported previously for the Sn/S homologue of 1 , the product comprises a mixed‐valence complex with a newly formed Ge–Ge bond. However, different from the transformation of the tin sulfide complex, the selenidogermanate precursor did not produce a paddle‐wheel‐like dimer of the DD type structure, but led to the formation of a noradamantane (NA) type architecture, which has so far been restricted to the Si/Se and Ge/Te elemental combination.  相似文献   

5.
The tetravalent germanium and tin compounds of the general formulae Ph*EX3 (Ph* = C6H3Trip‐2,6, Trip = C6H2iPr3‐2,4,6; E = Sn, X = Cl ( 1a ), Br ( 1b ); E = Ge, X = Cl ( 2 )) are synthesized by reaction of Ph*Li·OEt2 with EX4. The subsequent reaction of 1a , b with LiP(SiMe3)2 leads to Ph*EP(SiMe3)2 (E = Sn ( 3 ), Ge ( 4 )) and the diphosphane (Me3Si)2PP(SiMe3)2 by a redox reaction. In an alternative approach 3 and 4 are synthesized by using the corresponding divalent compounds Ph*ECl (E = Ge, Sn) in the reaction with LiP(SiMe3)2. The reactivity of Ph*SnCl is extensively investigated to give with LiP(H)Trip a tin(II)‐phosphane derivative Ph*SnP(H)Trip ( 6 ) and with Li2PTrip a proposed product [Ph*SnPTrip] ( 7 ) with multiple bonding between tin and phosphorus. The latter feature is confirmed by DFT calculations on a model compound [PhSnPPh]. The reaction with Li[H2PW(CO)5] gives the oxo‐bridged tin compound [Ph*Sn{W(CO)5}(μ‐O)2SnPh*] ( 8 ) as the only isolable product. However, the existence of 8 as the bis‐hydroxo derivative [Ph*Sn{W(CO)5}(μ‐OH)2SnPh*] ( 8a ) is also possible. The SnIV derivatives Ph*Sn(OSiMe3)2Cl ( 9 ) and [Ph*Sn(μ‐O)Cl]2 ( 10 ) are obtained by the oxidation of Ph*SnCl with bis(trimethylsilyl)peroxide and with Me3NO, respectively. Besides the spectroscopic characterization of the isolated products compounds 1a , 2 , 3 , 4 , 8 , and 10 are additionally characterized by X‐ray diffraction analysis.  相似文献   

6.
Treatment of R2SiCl2 (R = Me, Ph) with 2‐aminopyridine in the presence of NEt3 led to the formation of the bis(N‐2‐pyridylamino)silanes R2Si{NH(2‐Py)}2, which were isolated as pale yellow solids. Crystal structure analyses revealed that both compounds exhibit tetrahedrally coordinated silicon atoms which are linked to two 2‐pyridylamido moieties and two organyl groups (Me or Ph). As a result of intermolecular hydrogen bonding between the NH groups and the pyridyl N atoms the R2Si{NH(2‐Py)}2 molecules are catenated in the solid state. Treatment of R2Si{NH(2‐Py)}2 with nBuLi afforded the corresponding amides R2Si{NLi(2‐Py)}2, which were subsequently reacted with MCl2 (M = Sn, Pb) to give the dinuclear silylamides [{R2Si(N‐2‐Py)2M}2]. Both the tin and the lead derivatives exhibit closely related molecular structures, in which the tin (or lead) atoms are linked to two amido N atoms and a pyridyl N atom in a distorted trigonal bipyramidal coordination mode.  相似文献   

7.
Dimethyl Earth‐Metal Heterocycles – Derivatives of Trimethyl‐silylated, ‐germylated, and ‐stannylated Phosphanes and Arsanes – Syntheses, Spectra, and Structures The organo earth‐metal heterocycles [Me2MIII–E(MIVMe3)2]n with MIII = Al, Ga, In; E = P, As; MIV = Si, Ge, Sn and n = 2, 3 (Me = CH3) have been prepared from the dimethyl metal compounds Me2MIIIX (X = Me, H, Cl, OMe, OPh) and the pnicogen derivatives HnE(MIVMe3)3–n (n = 0, 1) according to known preparation methods. The mass, 1H, 13C, 31P, 29Si, 119Sn nmr, as well as the ir and Raman spectra have been discussed comparatively; selected representatives are characterized by X‐ray structure analyses. The dimeric species with four‐membered (E–MIII)2 rings are isotypic and crystallize in the triclinic space group P1, the trimer [Me2In–P(SnMe3)2]3 with a strongly puckered (In–P)3‐ring skeleton crystallizes with two formula units per cell in the same centrosymmetric triclinic space group.  相似文献   

8.
The spectroscopic constants and absorption spectra of neutral and charged diatomic molecules of group 11 and 14 elements formulated as [M2]+/0/? (M = Cu, Ag, Au), and [E2]+/0/? (E = C, Si, Ge, Sn, Pb) have been calculated at the PBE0/Def2‐QZVPP level of theory. The electronic and bonding properties of the diatomics have been analyzed by natural bond orbital analysis approach and topology analysis by the atoms in molecules method. Particular emphasis was given on the absorption spectra of the diatomic species, which were simulated by time‐dependent density functional theory calculations employing the hybrid Coulomb‐attenuating CAM‐B3LYP density functional. The simulated absorption spectra of the [M2]+/0/? (M = Cu, Ag, Au) and [E2]+/0/? (E = C, Si, Ge, Sn, Pb) species are in close resemblance with the experimentally observed spectra whenever available. The neutral M2 and E2 diatomics strongly absorb in the ultraviolet region, given rise to UVC, UVA and in a few cases UVB absorptions. In a few cases, weak absorbion bands also occur in the visible region. The absorption bands have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
A thermodynamic computation of the chemical equilibria that participate to the transport of InP by vapor phase chemical reactions is made for the system In/P/X/H (X = I, Cl) at 1000 and 900°K. The partial pressure of the InX3 species is found to be negligible. A thermodynamic analysis of the chemical reactions involved in the transport of various impurities (Si, Ge, Sn, Pb, Zn, Cd, Mg, Cu, Mn, Al, Ga, S, Se and Te) during the InP epitaxial growth by the close-spaced method is presented. A large transport probability is found for S and Ga. No transport possibilities are found for the elements: Si, Zn, Cd, Mg, Cu, Se and Te. Transport possibilities through various chemical reactions are found for Ge, Sn, Pb, Mn and Al.  相似文献   

10.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

11.
The diorganotin(Ⅳ) complexes of N-(3,5-dibromosalicylidene)-α-amino acid, R2Sn(2-O-3,5-Br2C6H2CH= NCHRCOO)(where R=H, Me, i-Pr, Bz; R'=n-Bu, Cy), were synthesized by the reactions of diorganotin dichlorides with in situ formed potassium salt of N-(3,5-dibromosalicylidene)-α-amino acid and characterized by elemental analysis, IR and NMR (^1H, ^13C and ^119Sn) spectra. The crystal structures of n-Bu2Sn(2-O-3,5-Br2C6H2CH= NCHRCOO)(R=i-Pr, Bz) and Cy2Sn(2-O-3,5-Br2C6H2CH=NCHRCOO)(R=Me, Bz) were determined by X-ray single crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry to form five- and six-membered chelate rings with the tridentate ligand. Bioassay results indicated that the compounds possess better in vitro antitumour activity against three human tumour cell lines, HeLa, CoLo205 and MCF-7, than cis-platin and moderate anti-bacterial activity against two bacteria, E. coli and S. aureus.  相似文献   

12.
The metathetical reactions between SnBr4 and Li2[E'C(PPh2E)2] in toluene produce the homoleptic tin(IV) complexes Sn[E′C(PPh2E)2]2 [E = E′ = S ( 1b ); E = S, E′ = Se ( 1c )], which were isolated as red crystals and structurally characterized by X‐ray crystallography. The metrical parameters of these octahedral complexes are compared with those of the all‐selenium analog Sn[E′C(PPh2E)2]2 (E = E′ = Se, 1a ), which was prepared previously by a different route.  相似文献   

13.
Our attempts to synthesise N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si ( 4 ), Ge ( 5 ), Sn ( 6 )] containing the CH=N imine group (in which L is C,N‐chelating ligand {2‐[(2,6‐iPr2C6H3)N=CH]C6H4}?) yielded 1,1′‐bis(2,6‐diisopropylphenyl)‐2,2′‐spriobi[benzo[c][1,2]azasilole] ( 7 ), 1,1′‐bis(2,6‐diisopropylphenyl)‐2,2′‐spriobi[benzo[c][1,2]azagermole] ( 8 ) and C,N‐chelated homoleptic stannylene L2Sn ( 10 ), respectively. Compounds 7 and 8 are an outcome of a spontaneous double hydrometallation of the two CH=N imine moieties induced by N→M intramolecular coordination (M=Si, Ge) in the absence of any catalyst. In contrast, the diorganotin hydride L2SnH2 ( 6 ) is redox‐unstable and the reduction of the tin centre with the elimination of H2 provided the C,N‐chelated homoleptic stannylene L2Sn ( 10 ). Compounds 7 and 8 were characterised by NMR spectroscopy and X‐ray diffraction analysis. Because the proposed N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si ( 4 ), Ge ( 5 ), Sn ( 6 )] revealed two different types of reduction reactions, DFT calculations were performed to gain an insight into the structures and bonding of the non‐isolable diorganometallic hydrides as well as the products of their subsequent reactions. Furthermore, the thermodynamic profiles of the different reaction pathways with respect to the central metal atom were also investigated.  相似文献   

14.
The reactions of Me2MCl2 (M = Si, Ge, Sn), Si2Me4Cl2, Si2Me2Cl3, Si2Me2Cl4 and CH2(SiCl2Me)2, and suitable mixtures thereof, with H2S / NEt3 and Li2E (E = Se, Te) have been investigated and lead to a variety of new group 14 chalcogenide systems.  相似文献   

15.
Hydroalumination or hydrogallation of tri(ethynyl)silanes, RSi(C≡C‐Ar)3 ( 1a , R = Ph, Ar = Ph; 1b , R = Me, Ar = Ph; 1c , R = Me, Ar = C6H4Me), with the element hydrides H‐EtBu2 (E = Al, Ga) in stoichiometric ratios of 1:1 to 1:3 at ambient temperature yielded the addition products (PhC≡C)2(R)Si[(tBu2E)C=C(H)Ph] ( 2 , R = Ph, E = Ga; 3a , R = Me, E = Al; 3b , R = Me, E = Ga), (PhC≡C)(Me)Si[(tBu2E)C=C(H)Ph]2 ( 4a , E = Al, 4b , E = Ga) and (Me)Si[(tBu2Al)C=C(H)Ar]3 ( 5 , Ar = Ph; 6 , Ar = C6H4Me). Compounds 2 – 4 show a relatively close interaction between the coordinatively unsaturated aluminium or gallium atoms and one of the Cα(≡C) atoms of unreacted alkyne substituents [245 (E = Al) and 266 pm (E = Ga)] that stabilises the kinetically favoured cis addition products with E and hydrogen on the same side of the resulting C=C double bonds. In the absence of these stabilising effects the compounds were found to isomerise to the thermodynamically favoured trans isomers.  相似文献   

16.
Synthesis and Structures of Bis(amino)germa and -stanna Chalcogenides The cyclic bis(amino)germylene 1 and the -stannylene 2 react with elemental S, Se and Te to yield oxydation products of the general formula Me2Si(NtBu)2MEl2M(NtBu)2SiMe2 (M = Ge, El = S ( 4 ), El = Se ( 5 ), El = Te ( 6 ); M = Sn, El = Se ( 9 ), El = Te ( 10 )). As may be deduced from X-ray structures ( 4, 5, 6, 9, 10 ) all compounds show similar central skeletons: the three spirocyclicly connected four-membered rings SiN2M (2x) and MEl2M are oriented in an orthogonal way to oneanother. The germanium and the tin atoms thus are in a distorted tetrahedral coordination while the chalcogen atoms only have two neighbours in acute angles. If 1 is allowed to react with trimethylamine-N-oxide, the oxygen is transferred to germanium and [Me2Si(NtBu)2GeO]3 ( 3 ) is formed. Contrarily to the other compounds 3 can be described as a trimer. There is a central almost planar Ge3O3 six-membered ring, the germanium atoms serving as spiro-cyclic centres to three GeN2Si four-membered rings (X-ray structure of 3 ). In the central four-membered rings of 4, 5, 6, 9 and 10 no transanular bonding between the chalcogen atoms have to be considered although these atoms have small distances to oneanother. The mean M-El distances have been found to be: Ge? O 1.762(5), Ge? S 2.226(3), Ge? Se 2.363(3), Ge? Te 2.592(5), Sn? Se 2.536(3), Sn? Te 2.741(3) Å.  相似文献   

17.
Diorganotin(IV) dipyrazolinates of the type R2Sn(C15H12N2OX)2 [where C15H12N2OX = 3(2′‐Hydroxyphenyl)‐5(4‐X‐phenyl)pyrazoline {where X = H ( a ); CH3 ( b ); OCH3 ( c ); Cl ( d ) and R = Me, Prn and Ph}] have been synthesized by the reaction of R2SnCl2 with sodium salt of pyrazolines in 1:2 molar ratio, in anhydrous benzene. These newly synthesized derivatives have been characterized by elemental analysis (C, H, N, Cl and Sn), molecular weight measurement as well as spectral [IR and multinuclear NMR (1H, 13C and 119Sn)] studies. The bidentate behaviour of the pyrazoline ligands was confirmed by IR, 1H and 13C NMR spectral data. A distorted trans‐octahedral structure around tin(IV) atom for R2Sn(C15H12N2OX)2 has been suggested. The free pyrazoline and diorganotin(IV) dipyrazolinates have also been screened for their antibacterial and antifungal activities. Some diorganotin(IV) dipyrazolinates exhibit higher antibacterial and antifungal effect than free ligand and some of the antibiotics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Homoatomic Clusters E93– with E = Ge, Sn, and Pb: EPR Spectra, Magnetism and Electrochemistry The properties of the compounds [K‐([2.2.2]‐crypt)]3E9 (E = Ge ( 1 ), Sn ( 2 ), Pb ( 3 )), which contain isolated E9 units, have been examined by EPR measurements at room temperature and at 77 K, magnetic susceptibility measurements in the range from 2 K to 300 K and cyclovoltammetric experiments. The EPR signals of powder samples and of single crystals are analyzed using three g tensor components, indicating low symmetric E93– clusters. Magnetic susceptibility data of 2 and 3 follow the expression (χmol = C/(T – θp) + χ0, with θp ≈ 0 and C corresponding to the presence of about 50% paramagnetic E93– species (S = 1/2). In solution, 2 and 3 show irreversible oxidation processes. Current intensities and peak forms indicate that adsorption processes play an important role irrespective of the material of the working electrode (silver, platinum, glassy carbon).  相似文献   

19.
Aromatic species with heavier Group 14 elements show remarkable differences in terms of stability, structure, and reactivity. Herein we report our experimental and theoretical investigations regarding isomers of germanium‐ and tin‐containing benzene analogues E2Si4R6 (E=Ge, Sn). The germanium‐substituted dismutational isomer with a tricyclic six‐membered scaffold is isolable, but unlike the homonuclear Si6 analogue slowly rearranges even at room temperature to give the propellane‐type global minimum isomer. In case of E=Sn the dismutational isomer may be an intermediate on the pathway to the propellane‐type species obtained, but cannot be detected even at low temperature. Unprecedentedly large chemical shift anisotropies in the 29Si NMR spectra that increase from the Si6 species through Ge2Si4 to Sn2Si4 are rationalized by progressively larger paramagnetic‐term contributions to the chemical shift tensor as a result of diminishing HOMO–LUMO gaps, which are also reflected in the absorption spectra, as well as by appearance and symmetry of these frontier orbitals.  相似文献   

20.
The reactions of diethylaminoethynyl(trimethyl)silane (1), bis(diethylaminoethynyl)methylsilane (2), diethylaminoethynyl(trimethyl)germane (3), dimethylaminoethynyl(triethyl)germane (4), diethylaminoethynyl(trimethyl)stannane (5) and methyl(phenyl)aminoethynyl(trimethyl)stannane (6) with trialkylboranes [BEt3 (7b), BPr3 (7c), BiPr3 (7d) and 9‐alkyl‐9‐borabicyclo[3.3.1]nonanes 9‐Me‐9‐BBN (8a) and 9‐Et‐9‐BBN (8b)] were studied. The alkynes 1 and 2 did not react even with boiling BEt3, whereas the reactions of 3–6 afforded mainly novel enamines [(E)‐1‐amino‐1‐trialkylgermyl‐2‐dialkylboryl‐alkenes (9, 10), (E)‐1‐diethylamino‐1‐trimethylstannyl‐2‐dialkylboryl‐alkenes (11, 12), (E)‐1‐methyl(phenyl)amino‐1‐trimethylstannyl‐2‐dialkylboryl‐alkenes (13, 14)]. This particular stereochemistry is unusual for products from 1,1‐organoboration reactions, indicating a special influence of the amino group. The starting materials and products were characterized by multinuclear magnetic resonance spectroscopy (1H, 11B, 13C, 15N, 29Si, 119Sn NMR). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号