首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we consider the general interfacial characteristics of a square elastic block, pressed onto an elastically similar half-plane by a constant normal force, and subjected to oscillatory shear. It is found that there is a critical coefficient of friction, 0.543, above which the contact is permanently stuck along its entire length for a shearing force below about 55% of that needed to cause sliding. For shearing forces above this, the contact interface will either shakedown to a fully adhered state (depending on the degree of reversal of the shear loading) or will exhibit cyclic slip at an interior point. If the coefficient of friction is below 0.543, the application of normal load alone will produce equal and opposite slip zones attached to the contact edges. The subsequent imposition of a shear force causes the leading edge slip zone to increase in length while the presence of residual slipping tractions at the trailing edge causes the trailing edge to lift off. Under oscillatory loading, the contact edges cycle between slip and separation over a minute region while an interior point may exhibit cyclic slip if the loading history is sufficiently demanding. The results found are of practical relevance to the study of fretting fatigue of complete contacts, such as some types of spline joint.  相似文献   

2.
Inertial effects in the mechanism of fibre pullout (or push-in) are examined, with emphasis on how the rate of propagation of stress waves along the fibre, and thence the pullout dynamics, are governed by friction and the propagation of companion waves excited in the matrix. With a simple shear lag model (assuming zero debond energy at the fibre/matrix interface), the effect of uniform frictional coupling between the fibre and the matrix is accounted for in a straightforward way. Analytical solutions are derived when the pullout load increases linearly in time. The process zone of activated material is generally divided into two or three domains along the axis of the fibre. Within these domains, slip in the sense implied by the load, slip in the opposite sense (reverse slip), and stick may be observed. The attainable combinations define three regimes of behavior, which are realized for different material parameter values. The elastodynamic problem is also solved more accurately using a plane stress finite element method, with friction represented by an interfacial cohesive zone. The predictions of the shear lag theory are broadly confirmed.  相似文献   

3.
在钢板夹芯混凝土组合板中,界面滑移是影响组合板力学性能的一个重要因素。通过对界面滑移的理论分析,建立了其微分方程;根据截面剪力分布和边界条件求出了任意集中载荷和均布载荷作用下界面滑移的计算公式。采用实验结果对本文公式的合理性进行了验证,最大误差为22.22%。根据计算结果及其比较分析可知:界面滑移沿组合板纵向呈非线性变化,组合板端部界面滑移最大,沿组合板纵向向跨中逐渐减小,跨中界面滑移为零;剪力连接程度、含钢率对界面滑移影响较大,混凝土强度等级对其影响较小;界面滑移随着剪力连接程度的提高、含钢率的降低、混凝土强度等级的提高而减小。  相似文献   

4.
Partial sliding along a infinite planar crack that is locally weakened by the presence of fluid is analyzed. Under uniformly applied normal and shear loads the crack surface generates non-uniform frictional resistance that has a local minimum within a penny-shaped fluid-filled domain. After the applied shear load reaches the resistance minimum a circular sliding zone initiates and then spreads around as the applied shear load is gradually increased. The primary focus of this work is to analyze sliding evolution as a function of the applied loads and the induced fluid pressure. The growth of the sliding zone is studied based on the criterion that shear stress intensity factors are zero along the zone boundary. An analytical relation between the radius of the sliding zone and the applied shear load is determined.  相似文献   

5.
The present study aims to study the normal and shear stresses produced in a rough irregular heterogeneous monoclinic half-space due to a normal moving load. Closed form expressions of normal and shear stresses have been obtained. It is observed that both normal stress and shear stress are affected not only by depth, the frictional coefficient on a rough surface, and the maximum depth of irregularity but also by the heterogeneity and types of irregularity in the medium. The comparative study has been made to analyze the effect of different types of irregularity on both the stresses. There is a significant effect of depth, frictional coefficient, heterogeneity, maximum depth of irregularity and irregularity factor on the normal and shear stresses in both heterogeneous monoclinic and heterogeneous isotropic medium. A comparison is made to study the effects of the said parameters on the normal and shear stress produced in both heterogeneous medium. These effects are highlighted and depicted by means of graphs. As a special case of the problem, the stress produced due to normal moving load in an isotropic half-space with and without heterogeneity, irregularity has been discussed.  相似文献   

6.
A systematic approach for investigating the interfacial behaviour of tyred systems is proposed. A two-dimensional contact model of an elastic strip, shrink-fitted onto a wheel, and subjected to different rolling contact conditions, has been adopted to illustrate the method. The model combines existing techniques to explore individual elastic contact problems and it enables us to characterise the behaviour at the strip/substrate interface caused by loads induced by a quasi-static application of stationary and moving loads on the surface of the layer. The solution is compared to the stationary load case and regimes of local slip, full stick, separation and frictional creep are identified and collated for a variety of loading conditions, materials and geometries. Further, this article presents an investigation of frictional shakedown for layered systems subjected to periodic contact loading. The term shakedown is here referred to as the possibility of developing interfacial residual stresses at the layer/substrate interface such that frictional slip, originally activated by the applied external contact load, ceases after a few loading cycles. The possible applicability of the Melan’s theorem for elastic frictional system is investigated and preliminary results presented.  相似文献   

7.
The direction of propagation of rolling contact fatigue cracks is observed to depend upon the direction of motion of the load. In this paper approximate calculations are described of the variation of Mode II stress intensity factors at each tip of a subsurface crack, which lies parallel to the surface of an elastic half-space, due to a load moving over the surface. In particular the effect of frictional locking of the crack faces under the load is investigated. In consequence of frictional locking the range of SIF at the trailing tip ΔKT is found to be about 30% greater than that of the leading tip ΔKL, which is consistent with observations that subsurface cracks propagate predominantly in the direction of motion of the load over the surface. The effects on kt and klof crack length, crack face friction, traction forces at the surface and residual shear stresses are also investigated.  相似文献   

8.
Expressions are presented for the stresses generated in the vicinity of a crack tip when a plane transient tension-stress wave, which is incident under an arbitrary angle, is diffracted by the crack. The effect of ductility effects on the combined Mode I and Mode II fractures is examined by assuming that yielding is restricted to a thin strip in the plane of the crack. Within this zone of yielding the normal stress in a certain defined direction is set equal to a yield stress of the material. It is shown that for a step-stress wave the leading edge of the zone of yielding initially moves at a constant speed, which is computed. The time for rupture at the trailing edge of the zone of yielding is also determined.  相似文献   

9.
Shear stresses along the shaft/hub interface in shrink-fit components, generated by torsional loads, can drive premature failure through fretting mechanisms. It is difficult to numerically predict these shear stresses, and the associated circumferential slip along the shaft/hub interface, due to uncertainties in frictional behaviour and the presence of steep stress gradients which can cause meshing problems. This paper attempts to provide validation of a numerical modelling methodology, based on finite element analysis, so the procedure may be used with confidence in fitness-for-purpose cases. Very few experimental techniques offer the potential to make measurements of stress and residual stress interior to metallic components. Even fewer techniques provide the possibility of measuring shear stresses. This paper reports the results of neutron diffraction measurements of shear stress and residual shear stress in a bespoke test specimen containing a shrink-fit. One set of measurements was made with a torsional load ‘locked-in’. A second set of measurements was made to determine the residual shear stress when the torsional load had been applied and removed. Overall, measurement results were consistent with numerical models, but the necessity for a small test specimen to allow penetration of the neutron beam to the measurement locations meant the magnitude of shear stresses was at the limits of what could be measured experimentally.  相似文献   

10.
微动磨损对过盈配合结构微动参量的影响   总被引:1,自引:1,他引:0  
基于Archard磨损模型与Abaqus自适应网格技术建立了仿真分析过盈配合结构微动磨损的计算模型,对配合面轮廓随循环周次的变化进行了预测,并详细研究了微动磨损对接触压应力、摩擦剪切应力及微动滑移幅值等微动参量的影响.结果表明:该计算模型能够较为准确地对配合面轮廓随循环周次的变化进行预测;由于微动磨损的作用,配合边缘处接触压应力的峰值逐渐增大,且其位置逐渐向配合内部移动;摩擦剪切应力的最大值逐渐由黏着-滑移过渡位置向磨损-未磨损过渡位置移动;张开区域的宽度以及滑移区内各位置处的微动滑移幅值均随着循环周次的增加而增大.  相似文献   

11.
The mixing layer between non-parallel streams   总被引:1,自引:0,他引:1  
Compared to the classical two-dimensional plane mixing layer, the mixing layer between non-parallel streams has an additional degree of freedom: the angle between the streams and the direction perpendicular to the trailing edge. Consequently the mean vorticity vector, which depends on these angles, is no longer by necessity parallel to the trailing edge of the flow. The ensuing coherent structures are generally helices with components normal to the trailing edge. They can be controlled by different mechanisms, depending on the velocity vectors.  相似文献   

12.
Detailed measurements of two-dimensional profiles of static pressure, mean velocity, turbulence intensity and Reynolds shear stress were carried out with conventional pressure probes and hot wire probes at preselected streamwise stations in the boundary layer and wake of a 12.5% thick, 600 mm chord two-dimensional symmetric aerofoil mounted at zero incidence in a low speed wind tunnel. The chord Reynolds number was one million and the wake measurements extended up to three chord lengths (or nearly 660 trailing edge momentum thicknesses) downstream of the trailing edge. The data indicate rapid interaction of the wall layers immediately behind the trailing edge, leading to significant changes in the flow parameters close to the trailing edge. The relaxation of the wake is preceded by initial ‘overshoot’ in the streamwise profiles of mean-flow parameters and peak values of turbulence components. Further growth of the wake towards similarity/equilibrium is discussed.  相似文献   

13.
The paper describes a general computational model for modelling of subsurface fatigue crack growth under cyclic contact loading of mechanical elements. The model assumes that the initial fatigue crack develops along the slip line in a single crystal grain at the point of the maximum equivalent stress. The position and magnitude of the maximum equivalent stress are determined with the Finite Element Analysis of the equivalent contact model, which is based on the Hertzian contact conditions with the addition of frictional forces. The Virtual Crack Extension method is then used for simulation of the fatigue crack propagation from the initial to the critical crack length, when the surface material layer breaks away and a pit appears on the surface. The pit shapes and relationships between the stress intensity factor and the crack length are determined for various combinations of contacting surface curvatures and contact loadings. The computational results show that the model reliably simulates the subsurface fatigue crack growth under contact loading and can be used for computational predictions of surface pitting for various contacting mechanical elements.  相似文献   

14.
A cohesive interface modeling approach to debonding analysis of adhesively bonded interface between two balanced adjacent flexural cracks in conventional material (e.g., concrete or wood) beams strengthened with externally bonded FRP plates is presented. Both the strengthened beam and strengthening FRP are modeled as two linearly elastic Euler–Bernoulli beams bonded together through a thin adhesive layer. A bi-linear cohesive model, which is commonly used in the literature, is adopted to characterize the stress-deformation relationship of the FRP–concrete interface. Completely different from the single-lap or double-shear pull models in which only the axial pull force is considered, the present model takes the couple moment and transverse shear forces in both the substrates into account to study the second type of intermediate crack-induced debonding (IC debonding) along the interface. The whole debonding process of the FRP–concrete interface is discussed in detail, and closed-form solutions of bond slip, interface shear stress, and axial force of FRP in different stages are obtained. A rotational spring model is introduced at locations of the two adjacent flexural cracks to model the local flexibility of the cracked concrete beam, with which the relationship between the local bond slip and externally applied load is established and the real bond failure process of the FRP-plated concrete beam with the increasing of the externally applied load is revealed. Parametric studies are further conducted to investigate the effect of the thickness of adhesive layer on the bond behavior of FRP–concrete interface. The present closed-form solution and analysis on the local bond slip versus applied load relationship for the second type of IC debonding along the interface shed light on the bond failure process of structures externally strengthened with FRP composite plates and can be used effectively and efficiently to predict ductility and ultimate load of FRP-strengthened structures.  相似文献   

15.
Longitudinal wave velocity is used to characterize the point defects in crystalline solids. High purity Al single crystal was selected for both the finite element analysis and experimental work. Since the jog motions of dislocations caused by intersected slides such as cross slips induce point defects, the total amount of cross slips was calculated instead of calculating directly from the point defects. The effect of crystal orientations on total amount of cross slips under pure shear was also investigated via the finite element method. The result suggest that if the initial shear stress direction is located at the inner side of stereographic triangle, only single slip activities occurred at the beginning of plastic deformation and no effects due to point defects were present. However, as the shear stress direction rotates along the slip direction, point defects are induced by cross slips between primary and secondary slip systems due to work-hardening. This phenomenon was then examined by measuring longitudinal wave velocity changes propagating in Al single crystal subjected to the combination loads of equi-biaxial tension and compression (a pure shear state). Good qualitative agreement between the finite element result and measured data suggest that the longitudinal wave velocity can be used as an index to characterize point defects in crystalline materials.  相似文献   

16.
Hertzian fracture at unloading   总被引:1,自引:0,他引:1  
Hertzian fracture through indentation of flat float glass specimens by steel balls has been examined experimentally. Initiation of cone cracks has been observed and failure loads together with contact and fracture radii determined at monotonically increasing load but also during unloading phases. Contact of dissimilar elastic solids under decreasing load may cause crack inception triggered by finite interface friction and accordingly the coefficient of friction was determined by two different methods. In order to make relevant predictions of experimental findings, a robust computational procedure has been developed to determine global and local field values in particular at unloading at finite friction. It was found that at continued loading it is possible to specify in advance how the contact domain divides into invariant regions of stick and slip. The maximum tensile stress was found to occur at the free surface just outside the contact contour, the relative distance depending on the different elastic compliance properties and the coefficient of friction. In contrast, at unloading invariance properties are lost and stick/slip regions proved to be severely history dependant and in particular with an opposed frictional shear stress at the contact boundary region. This causes an increase of the maximum tensile stress at the contour under progressive unloading. Predictions of loads to cause crack initiation during full cycles were made based on a critical stress fracture criterion and proved to be favourable as compared to the experimental results.  相似文献   

17.
Plane strain plastic yielding at a crack tip has been represented by edge dislocations with Burgers vectors parallel to symmetrical planes inclined at 70° and 45° to the plane of the crack. The plastic displacement and the stresses near the crack tip were calculated by a numerical method and the effect of a reduction in applied stress was determined. Removal of the whole or a part of the initial load produces reverse shear in regions of the slip band nearest the crack tip. The amount of reverse shear depends only on the reduction in the load and not on its initial value. The reverse shear is associated with the presence of negative dislocations and the stresses near the crack tip may become compressive even though the applied (remote) stress is still tensile. The degree and extent of compression depends on the reduction in applied stress and on its original value. It is argued that the residual compressive stresses produced under fluctuating loads may produce crack closure and crack arrest. The effect of residual plasticity in a slip band left behind a growing crack has been estimated. It is shown that after an overload the excess residual plasticity opposing crack opening rises to a maximum value when the crack tip has advanced some distance from the point where the overload was applied.  相似文献   

18.
Non-reacting experiments and numerical simulations have been performed to investigate the mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of a flameholding cavity in a supersonic vitiated air flow with stream Mach number 1.7. Using helium as simulated fuel, the acetone vapor is adulterated into the fuel jet. The fuel distribution in spanwise and streamwise direction is imaged by the planar laser-induced fluorescence (PLIF) measurement. According to the similarity of experimental observations with different cavities, the typical L/D = 7 cavity with aft wall angle 45° is chosen and the flowfield with the injection is calculated by Large Eddy Simulation. Experimental and numerical results have shown that most of the fuel flow away upon the open cavity with the lifting counter-rotating vortex structures induced by the transverse jet. Only a small portion of the fuel is convected into the cavity shear layer by the vortex interaction of the jet with cavity shear layer, and then transported into the cavity due to the cavity shear layer motion and the interaction of the shear layer with the cavity trailing edge.  相似文献   

19.
An analytical model to estimate longitudinal traction of a tire in snow was developed and verified to have good predictability in comparison with measurements. Snow traction of a tire is composed of four kinds of forces in this model: braking force attributable to snow compression, shear force of snow in void (space between tread blocks), frictional force, and digging force (edge effect generated by sipes and blocks). The mechanical characteristics of snow were considered in the prediction of braking force and shear force, but were not considered in the prediction of other forces. The contribution of shear force of snow in void and the frictional force was large in static traction (traction just before a tire slips). On the other hand, the contributions of digging force and frictional force were large in situations involving high slip ratios.  相似文献   

20.
杨育梅  李志鹏 《力学学报》2021,53(5):1345-1354
高温超导带材因其高载流z能力、低交流损耗等优点, 在超导领域得到了广泛的关注, 然而在带材的应用中出现的力学问题严重阻碍了其应用. 基于此, 本文分析了受外部磁场激励YBCO高温超导带材在超导层局部脱黏后的电磁力学响应. 基于超导临界态Bean模型和弹性力学平面应变方法, 给出了超导薄膜内正应力与基底界面处切应力相关联的控制方程, 基于数值方法研究了超导薄膜内的正应力及基底界面处的切应力随外部磁场的变化规律. 结果显示: 在脱黏区域附近, 超导薄膜内的正应力和基底$\!-\!$薄膜界面处的切应力急剧增大, 该正应力及切应力极易引起超导层的进一步脱黏. 同时, 剪切应力在结构边缘处出现极值. 基底材料的属性, 特别是杨氏模量对结构内的应力影响显著, 在软基底材料结构中, 超导薄膜内将出现较大的正应力, 而基底材料较硬时, 在基底$\!-\!$薄膜界面处将出现较大的剪切应力, 这些因素均会引起超导涂层结构的力学及电学性能的退化. 本文研究可望为超导带材的加工制备及脱黏的处理提供一定的理论指引.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号