首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The elevated temperature infrared stimulated luminescence (IRSL) and post-IR IRSL signals of potassium (K)-feldspars have recently garnered attention for their minimal rates of anomalous fading. The post-IR IRSL signal has been used to obtain age estimates for geological deposits, mostly in Europe. Studies on the behaviour of the IRSL and post-IR IRSL signals of K-feldspars from a wider range of geographic regions and depositional contexts are needed, particularly for regions where the OSL signal from quartz is poorly behaved. Discrepancies in the literature regarding the behaviours of the IRSL and TL signals of K-feldspars also highlight the need to characterise the behaviours of samples from a wide variety of contexts. This paper begins to address this problem by characterising and comparing the IRSL signals of a metamorphic and a volcanic K-feldspar sample from two sites in East Africa, a region in which the OSL signal from quartz has generally proven problematic for dating. We demonstrate that the metamorphic and volcanic K-feldspars have substantially different TL glow curves that respond differently to IR stimulation. The sample of metamorphic K-feldspar from Tanzania (MR9) has a peak at 430 °C that is associated with the IRSL signal and an optically less-sensitive peak at 350 °C, while the sample of volcanic K-feldspar from Ethiopia (MB3) exhibits a single broad TL region centred at ~230 °C that responds differently to IR stimulation. Differences in the change of IRSL decay curve shape with stimulation temperature suggest that the processes of IRSL production many vary between the two samples. Using dose recovery tests, we demonstrate that the IRSL (50 °C), IRSL (225 °C) and post-IR IRSL (50 °C, 225 °C) signals of sample MR9 are suitable for dose and age estimation using the single-aliquot regenerative-dose procedure, while those of sample MB3 are less suitable. The post-IR IRSL signal of the latter sample performs poorly in tests of SAR suitability and the three signals exhibit extremely high fading rates over laboratory timescales (g2days > 19%/decade).  相似文献   

2.
A museum sample of perthitic feldspar was used to study the production of post-IR IRSL signals. It was found that traps responsible for low temperature (∼230 °C) TL peaks play an unexpectedly important role in post-IR IRSL production. During the production of the IRSL signal during low temperature IR stimulation (100 °C), electrons are optically transferred from IRSL traps into these TL traps which have been emptied by the preceding preheat at 320 °C. Subsequent heating to 300 °C causes thermal transfer of these electrons from these traps back into previously emptied IRSL traps which are related to the high temperature TL peaks. IR stimulation of these electrons results in post-IR IRSL. Thus the initial source of the post-IR IRSL signal is the same as the IRSL signal, with a role being played by intermediate traps that give rise to TL signals between 200 and 250 °C, and the final source is similar to that of the IRSL signal. Therefore the post-IR IRSL signal is a by-product of the production of the IRSL signal. It was also found that post-IR IRSL production with high post-IR IR stimulation temperatures (e.g. >230 °C) additionally includes a small contribution from the post-IR isothermal decay of high temperature TL peaks that are not sensitive to IR stimulation at low stimulation temperatures.  相似文献   

3.
Time Resolved Optically Stimulated Luminescence (TR-OSL) from BeO ceramics was investigated using blue (445 nm) and near-IR light (852 nm) for stimulation. Stimulation spectrum of the TR-OSL signal – as measured in the interval 700 to 420 nm- was observed to increase monotonically with the decreasing stimulation wavelength. In addition to the “fast” and “slow” components observed with blue light stimulation, IR stimulated TR-OSL spectra of irradiated BeO ceramics were observed to have two components with average lifetimes around ∼2.5 μs and ∼17 μs. Emission spectra of the both IR stimulated TR-OSL components were observed to have a broad emission band peaking around 330 nm. Thermal stability of the IR stimulated TR-OSL signal was studied by making preheating experiments in the range from 100 °C to 190 °C. It was observed that the IR stimulated OSL signal is stable up to ∼150 °C and decay afterwards. Radiation dose response of the IR stimulated luminescence signal was obtained in the range from 5 to 500 Gy. Both blue and IR stimulated TR-OSL signals grew up to 100 Gy and exhibited saturation for higher doses. Additionally, measurement temperature dependence of the components was also investigated and for the ∼2 μs component thermal assistance with activation energy around 0.16 eV was observed. It seems that the fast component of the blue stimulated TR-OSL component can be correlated to the ∼2 μs IR stimulated TR-OSL component.  相似文献   

4.
Various optically stimulated luminescence signals from K-feldspar have been used to determine the equivalent doses of sediment samples. Understanding the properties of these optical signals is critical to evaluate their applicability and limitations to optical dating. In this paper, some properties of IRSL, post-IR OSL and post-IR IRSL signals (detected in the UV region using U-340 filters) from a museum sample of K-feldspar were investigated by analyzing the relationships between optical and TL signals, and the effect of optical bleaching and heating on optical signals. The trap parameters of the different optical signals were calculated using the pulse annealing method. The results show that this sample exhibits two regenerated TL peaks at ~140 and ~330 °C. Corresponding to the low temperature TL peak, the OSL and post-IR OSL signals appear to be more associated with lower temperature TL than the IRSL signal measured at 50 °C. Corresponding to the high temperature TL peak, the post-IR IRSL signals mainly originate from the more thermally stable traps associated with the high temperature TL, compared with the IRSL and post-IR OSL signals. However, the post-IR IRSL225 °C signal is shown to be hard to be bleached by blue light and simulated sunlight, compared with the IRSL50 °C and low temperature post-IR IRSL signals. The implication for optical dating is that the elevated temperature post-IR IRSL signals can be preferentially applied over other signals from K-feldspar, but it is desirable that the effectiveness of the pre-depositional zeroing of these signals is assessed.  相似文献   

5.
The LM–OSL signal of quartz, while measured at room temperature, is dominated by an intermediate, broad and intense OSL component, so that its contribution and general characteristics are derived very accurately. Through a series of dose–response, bleaching and thermal decay at room temperature experiments, in conjunction with curve fitting studies, a component resolved analysis is carried out studying the correlation between this specific component, termed as LM–OSL component C2 and the 110 °C TL glow peak in quartz. The dose–response of these two luminescence components behaves exactly similar being linear at low doses and saturating at almost 100 Gy. Both signals decay exponentially under illumination, providing identical optical detrapping cross-section values. Residual of both luminescence signals after thermal decay at room temperature follows an exponential law, yielding similar mean half-lives. All previous luminescence features provide strong evidence for the electron trap being the same for both the 110 °C TL trap and the LM–OSL component C2. The results of the present work are very promising and clearly support the possibility of extrapolating the TL pre-dose methodology to the OSL pre-dose effect using only the LM–OSL component C2.  相似文献   

6.
Pre-dose sensitization of various components of LM-OSL signal of a Nigerian annealed quartz sample has been investigated along side with that of 110 °C TL peak in this work. Successive cycles of irradiations and TL/OSL readings using different heating rates were employed to attain pre-dose sensitization. The results showed that the pre-dose sensitization factor of 110 °C TL peak depends strongly on the heating rate of thermal activation. The pre-dose sensitization of 110 °C TL and all components of RT LM-OSL yield HR dependence on the sensitization after TA. This dependence was ascribed to the different heating time associated with each HR. Sensitization of LM-OSL measured at 125 °C generally does not show dependence on HR of TA. This was with the exception of components C1 and C3. Increasing sensitization pattern with increasing HR suggests a correlation between the TL glow-peak at 110 °C, the component C4 of RT LM-OSL and the component C3 of the LM-OSL signal at 125 °C. Extension of the present investigation to diverse quartz kinds from different origins was suggested in order to study the prevalence of the pre-dose sensitization on component C4 of RT LM-OSL. Finally fast heating is suggested for lower sensitization of fast component while applying OSL dating protocols.  相似文献   

7.
Knowledge of the relative luminescence response to alpha and beta radiation is very important in TL and OSL dating. In the present study the relative alpha to beta response is studied in a sedimentary quartz sample, previously fired at 900 °C for 1 h, in the dose region between 1 and 128 Gy, for both thermoluminescence (TL) and linearly modulated optically stimulated luminescence (LM – OSL). The LM – OSL measurements were performed at room temperature and at 125 °C. All OSL signals were deconvolved into their individual components. Comparison of OSL curves after alpha and beta irradiation strongly supports that quartz OSL components follow first order kinetics in both cases. In the case of TL, the relative alpha to beta response is found to be very different for each TL glow-peak, but it does not depend strongly on irradiation dose. In the case of LM – OSL measurements, it is found that the relative behaviour of the alpha to beta response is different for three distinct regions, namely the fast OSL component, the region of medium OSL component originating from the TL glow-peak at 110 °C when stimulation takes place at room temperature and finally the region of slow OSL component. Following stimulation at ambient temperature, the relative alpha to beta response of all components was not observed to depend significantly on dose, with the value of ratio being 0.03 and a tendency to decrease with increasing dose. However, in the case of measurements performed at 125 °C, the relative response of the fast components is much enhanced, and for the remaining components it increases with increasing dose. Special care must be taken to examine the relative alpha to beta response of the fast component at 125 °C which contrasts the relative response of the TL peak at ca. 325 °C. The implications for the dating of annealed quartz are also briefly discussed.  相似文献   

8.
Time-resolved OSL (TR-OSL) from natural zircon (ZrSiO4) minerals was investigated using 445 nm blue laser light for stimulation. Analyses of the TR-OSL spectra have showed that the decay is composed of two exponential components with lifetimes varying around ∼17 μs and around ∼110 μs respectively. The behaviour of these signal components, was examined under various sample treatments and experimental conditions. Preheating experiments showed that the OSL signal is stable up to temperatures ∼250 °C then becomes unstable. The dose response of the TR-OSL signal from zircon was determined in the range from 1 Gy to 1 kGy and observed to be increasing linearly. Practically, no effect of radiation dose on the lifetimes of signal components was observed. In addition, the effect of measurement temperature on the TR-OSL decay lifetimes was also investigated. Thermal quenching energies of the “fast” and the “slow” components were found to be very close to each other i.e. 0.18 and 0.24 eV respectively.  相似文献   

9.
The IRSL and post-IR IRSL (pIRIR) signal characteristics of polymineral fine grains are investigated and compared with those of K- and Na-rich feldspar extracts. TL signal loss after IR and pIRIR stimulations occurs mainly at around 320 °C for polymineral and Na-feldspar samples and around 410 °C for K-feldspar samples, when a preheat temperature of 250 °C for 60 s is used. After preheating to a higher temperature (320 °C for 60 s) all samples show a TL reduction around 410 °C in the blue detection window. Pulse annealing experiments for IRSL and pIRIR signals for preheats between 320 °C and 500 °C indicate that the signal stabilities are similar among the different feldspar types, when a higher preheat temperature (>320 °C) is used. Thermal activation energies for IRSL and pIRIR signals are largest in K-feldspar and smallest in polymineral fine grains, in both blue and UV detection windows for both fast time-resolved (TR) and continuous wave (CW) signals. These results suggest that IRSL and pIRIR signals in polymineral fine grains originate mainly from Na-feldspar grains; these signals are less thermally stable than those from K-feldspar, but a more stable signal (presumably from K-feldspar grains) can be obtained using a higher preheat temperature.  相似文献   

10.
BaSO4:Eu2+ phosphor has been investigated for its photoluminescence (PL), thermoluminescence (TL), TL kinetics, optically stimulated luminescence (OSL) and thermally assisted OSL (TA-OSL) response. PL spectra showed the characteristic emission of Eu2+ ion at 375 nm when excited by 320 nm. The luminescence lifetime has been measured as 40 and 628 μs of fast and slow components respectively. The TL parameters such as trap depth (E), frequency factor (s) and the order of kinetics (b) are determined. The phosphor is found to be 6 and 4 times more sensitive than CaSO4:Dy and α-Al2O3:C, respectively, in TL mode. However, its OSL sensitivity is 75% of α-Al2O3:C. It is found to possess three OSL components having photoionization cross-sections of 1.4 × 10−17, 1.2 × 10−18 and 5.2 × 10−19 cm2 respectively. The temperature dependence of OSL studies showed that integrated TA-OSL signal increases with stimulation temperature between 50 and 250 °C, while between 260 and 450 °C the signal intensity decreases. This behavior is interpreted to arise from competing effects of thermal assistance (activation energy EA = 0.063 ± 0.0012 eV) and depletion of trapped charges. This increase of OSL at elevated temperature can be employed for enhancing the sensitivity of phosphor for radiation dosimetry.  相似文献   

11.
A new OSL phosphor CaSO4:Eu was developed. The phosphor shows good OSL sensitivity which is about 55% of commercially available Al2O3:C. The phosphor also shows good TL sensitivity and the dosimetric peak, which appears around 186 °C, has sensitivity nearly 50% of Al2O3:C. After OSL readout of the irradiated sample, the TL peak around 250 °C depletes completely, with partial depletion of peak around 186 °C. Since the traps responsible for the high temperature peak are involved for the observed OSL, the sample shows low post-irradiation fading. The OSL decay is similar to Al2O3:C. Thus this phosphor due to its good OSL sensitivity, linear dose response, low fading and simple preparation technique could be useful for radiation dosimetry applications.  相似文献   

12.
Laboratory storage and preheating experiments were carried out to study anomalous fading of infrared stimulated luminescence (IRSL) signals derived from polymineral grains extracted from Chinese loess. Results of laboratory storage at 150 °C and higher temperature preheating experiments showed that such thermal treatments could lessen the effect of fading and indicated the presence of both thermal and non-thermal fading. In addition, the behavior of natural fading over the past 9–170 ka was investigated. By comparing with independent ages (obtained from fine-grain quartz using the optically stimulated luminescence (OSL) signal for the past 130 ka and the thermally transferred OSL (TT-OSL) signal in the age range of 130–170 ka) for the same samples, equivalent doses obtained from the IRSL signals were found to be underestimated by different amounts since the penultimate glacial; there was a linear dependence when the age underestimation was plotted against geological time.  相似文献   

13.
The alkali halide NaCl (Common salt) is an environmentally-abundant phosphor of considerable potential for retrospective dosimetry and radiological event analysis due to its high sensitivity to ionising radiation when analysed by Thermoluminescence (TL), Optically-stimulated luminescence (OSL) or Infrared-stimulated luminescence (IRSL). We report here aspects of luminescence from NaCl relevant to the development of valid protocols for measurement of recent ionising radiation exposure. The timescale of interest in this application is from days to decades, hence our emphasis is on detection and characterisation of TL emission in the 100–300 °C range, and of OSL and IRSL emissions measured following only low temperature preheating (160 °C). A collection of 19 salt samples was assembled, including samples of rock salt and domestic salt produced by evaporation from brine. Analysis of TL emission spectral changes, together with previously reported TL, OSL and IRSL sensitivity changes, confirmed activation of sensitivity change by exposure to temperatures exceeding 160 °C. Kinetic analysis using Chen's method found E = 0.943 eV and s = 5.1 × 1011 s?1 for the 100 °C TL peak, giving a lifetime at 20 °C consistent with previous calculations and in the range of 7–14 h.  相似文献   

14.
Recent post-IR IRSL (pIRIR) dating studies using polymineral fine grains assumed that the a-values obtained for the IRSL signal at 50 °C and the pIRIR signal at higher temperatures (e.g. 225 °C) are identical. However, the a-value of a sample depends on the stimulation method, and the assumption mentioned above remains to be tested. Using five polymineral fine grain samples, this study investigates whether a common a-value can be used for both the IR and the pIRIR signals. Applying the pIRIR protocol, the a-values were measured with three different methods of signal resetting (optical bleaching, end of SAR cycle, heating). In addition, uncorrected α- and β-irradiation induced growth curves were determined for three samples and fitted with single saturating exponential functions. For the investigated samples we found significant mean differences, 0.023 ± 0.012 and higher, in the a-values determined for the IR50 and pIRIR225 signals. Synthetic a-values deduced from uncorrected multiple-aliquot dose response curves seem to confirm this observation. Although, in summary, our results indicate that the practice of using a common a-value should be carefully re-considered, the physical reasons remain to be determined.  相似文献   

15.
Quartz is the mineral most commonly used for sediment dating. In dating practice, the optically stimulated luminescence (OSL) of quartz is measured mainly using the stimulation light whose wavelength is 470 ± 30 nm. The parameters of traps active in the OSL process are also determined for this stimulation band. The zeroing of the OSL is the fundamental condition of applicability of the luminescence dating for specific sediment and takes place in sunlight whose spectrum differs significantly from the band 470 ± 30 nm. In order to be able to know the course of OSL process in nature, a wider knowledge of the dependency of the trap parameters on the stimulation band is needed. Here the results are presented for the OSL measurements carried out with different wavelengths of stimulation light. For each stimulation band the components of the OSL signal are determined by the fitting procedure, and in this way the wavelength dependence of an individual component is found. The experiment has been repeated for two temperatures of OSL detection – the room temperature, which corresponds to natural conditions, and for 125 °C, which is the temperature usually applied for OSL measurement in dating. Four OSL components are presented in both experimental series. The values of their optical cross-section changes along with stimulation energy and temperature, as it is predicted by the model of OSL process including crystal lattice vibrations.  相似文献   

16.
Pulsed OSL is applied to nine fine-grained sediment samples from Sichuan province, China, using stimulating pulses of 10 μs on and 240 μs off, with an infrared exposure prior to each OSL measurement. Comparison of fading rates between pulsed and non-pulsed signals, the latter also obtained with a preceding IR exposure, shows that fading is significant for mainly the non-pulsed signals. Presence of a pulsed IRSL and the magnitudes of b-value to correct for lower alpha efficiency suggest that pulsing does not fully remove a significant feldspar signal, only a fading component. Comparison with ages of quartz extracts shows that pulsed OSL ages are consistent, while CW-OSL ages are slightly older and CW-IRSL ages are much older. The older ages suggest a less well-bleached feldspar component.  相似文献   

17.
The dependence of the equivalent dose (De) on the temperature used at stimulation when the standard OSL dating protocol (SAR) is applied has been investigated for sediment quartz samples. A considerable change in this value appears in the temperature region from 80 to 140 °C that is known for high complexity in OSL processes in quartz. Our observations suggest that the variation in the obtained results at least partly is caused by the laboratory procedure used when the natural OSL signal is measured. Directions for further investigations concerning this undesirable effect are indicated.  相似文献   

18.
Time-Resolved Optically Stimulated Luminescence (TR-OSL) from BeO ceramics was investigated using a blue laser (445 nm) as stimulation light source. It was observed that, at relatively low dose levels (up to ∼25 Gy) the TR-OSL decay curve can be approximated with a single exponential decay function with a lifetime of ∼26 μs at room temperature. Beyond 25 Gy a new decay component with a lifetime of a ∼2 μs was observed in addition to the ∼26 μs component. Thermal stability, radiation dose response, optical bleaching, measurement temperature dependence of the components of the TR-OSL signal were investigated in detail. As result of these studies, a new OSL component which becomes unstable after 150 °C was observed. OSL decay rate of this component was found to be higher than the one which becomes unstable after 300 °C. In order to obtain information about the temperature dependence of the luminescence efficiency, luminescence emission lifetime was determined in the temperature range from 30 to 130 °C with 10 °C steps. Using the temperature dependence of the lifetime, thermal quenching energy was determined to be around 0.56 eV for the 26 μs component. For the ∼2 μs component an enhancement in the component intensity was observed pointing to a thermally assisted process with activation energy of 0.15 eV.  相似文献   

19.
α-Al2O3:C phosphor was studied for improvement of its dose threshold using thermally assisted optically stimulated luminescence (TA-OSL) phenomenon. The dose threshold of phosphor depends on the standard deviation of the background signal which affects the signal-to-noise ratio of the instrument. In case of OSL measurement, the background signal is due to the scattering of the stimulation light intensity from the planchet. On reducing the stimulation light intensity, the scattering component and thus the standard deviation of the background signal reduces considerably. The reduction in stimulation light intensity increases the readout time due to the dependence of decay constant of OSL signal on the former. The decay constant depends on the photo-ionization cross-section of the OSL active traps in the phosphor participating in OSL phenomenon and thus on the readout temperature due to the temperature dependence of photo-ionization cross-section. In order to achieve the same decay constant for two sets of measurements for α-Al2O3:C i.e. to take the OSL measurement in the same time at lower stimulation light intensity as that taken for higher light intensity, the temperature of measurement for α-Al2O3:C for the former was raised. Moreover, the increase of readout temperature does not affect the standard deviation in the background signal of OSL readout. The optimized elevated temperature for α-Al2O3:C was found to be 85 °C as the main dosimetric peak starts giving signal due to depletion of its filled traps, at temperatures higher than 90 °C. As a result of lowering the stimulation intensity at higher temperature (85 °C), the standard deviation in the background signal and thus the overall dose threshold of α-Al2O3:C was found to improve by 1.8 times.  相似文献   

20.
Concern over anomalous fading has been the biggest single factor responsible for deterring the widespread use of the infra-red stimulated luminescence (IRSL) or thermoluminescence (TL) signal from feldspars for luminescence dating. There has therefore been great interest in the use of the recently proposed Post-IR IRSL signal, because it has been shown to significantly reduce the degree of anomalous fading observed in feldspars and therefore potentially provides a means of circumventing the issue. This study undertakes a systematic investigation into various preheat and Post-IR IRSL measurement conditions proposed in the literature, by using two samples from the Halfway House loess section in Alaska which bracket the Old Crow tephra which has been dated using fission track methods. Preheat plateau tests show a dramatic change in equivalent dose with Post-IR IRSL measurement conditions, and further tests reveal that these changes are driven by preheat temperature rather than Post-IR IR stimulation temperature. Dose recovery tests on laboratory-bleached material mimic the findings of the natural preheat plateau test data, and sensitivity change between the first and second Single Aliquot Regenerative dose (SAR) measurement cycle is found to be responsible. Comparison of the Post-IR IRSL ages with the independent age control shows that, for the samples in this study, the Post-IR IR signal stimulated at 290 °C is inappropriate for dating. However, use of lower preheat (250–300 °C) and Post-IR IR stimulation temperatures from 225 to 270 °C gave rise to ages which were in agreement with the independent age control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号