首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
 以热力学分析和动力学分析为基础,设计了几种实现CH4-CO2低温转化直接合成含氧有机物的混氢进料方式,通过实验对这些进料方式进行了初步探讨,并考察了甲烷活化及二氧化碳反应过程中混氢比例的影响.结果表明,与CH4/CO2进料方式相比,几种混氢进料方式都能提高乙酸收率,但需要很好地控制二氧化碳加氢反应.在甲烷活化过程中混氢,13.8%的氢气比例对甲烷的转化最有利,乙酸收率可达最高;在二氧化碳反应过程中混氢,混氢比例为50%时乙酸收率最高.催化剂的催化特性与其反应前后表面特征的变化相吻合.  相似文献   

2.
周苹  陈诵英 《合成化学》1993,1(1):29-44
运用加压动态分析装置研究了硫化MoO_3/A1_2O_3,甲烷化催化剂上CO和H_2的吸附及反应。结果表明,在给定反应条件下催化剂上吸附的CO和H_2可分为可逆与不可逆两类,且对甲烷化反应有着不同的贡献。甲烷的生成是可逆吸附氢和不可逆吸附CO共同作用的结果。不可逆吸附氢与CO不生成甲烷,可逆吸附的CO加氢则与副产物乙烷等的生成密切相关。结合前人的动力学考察结果,解释了Mo系甲烷化催化剂与Ni系甲烷化催化剂要求不同反应压力的实质性原因。  相似文献   

3.
可逆与不可逆吸附的CO在甲烷化反应中的作用   总被引:2,自引:2,他引:0  
在自行设计和建立的加压动态分析装置上,研究了工业甲烷化催化剂(Ni/Al_2O_3)上CO的吸附和反应行为。结果表明,在反应温度250℃下催化剂上吸附的CO有可逆吸附和不可逆吸附之分,甲烷的生成是与不可逆吸附的CO作用的结果,而可逆吸附CO则与生成乙烷、丙烷等密切相关。同时发现甲烷化反应过程的发生必须以不可逆吸附的氢存在为前提,且催化剂上不可逆吸附的氢可分为两部分,一部分可以被CO顶出,这部分氢可能起到了诱导CO吸附的作用;另一部分不可逆吸附的氢不能被CO顶出,这部分氢可能是构成催化剂不可缺少的“组分”(或称“促进剂”)。  相似文献   

4.
沉积岩成烃热模拟实验产物的同位素特征及应用   总被引:8,自引:0,他引:8  
对25个太熟或低熟沉积岩样的成烃热模拟实验产物(烃气、二氧化碳、油、残样)进行了碳、氢、氧同位素测定。其中,着重研究了甲烷碳同位素的热演化分馏作用。根据各类样品的δ~(13)C-R_o民回归方程进行了天然气来源判别及混合气中母气比例的计算。  相似文献   

5.
王敏  宋志国  姜恒  宫红 《有机化学》2008,28(9):1629-1632
室温无溶剂条件下, 乙酸能有效促进邻甲基苯磺酸铜催化一系列醇或酚和3,4-2H-二氢吡喃反应, 生成相应的四氢吡喃醚. 在乙酸存在条件下, 体系的催化性能有显著提高, 邻甲基苯磺酸铜用量仅需0.3 mol%(占醇或酚的摩尔分数)就能使反应在较短时间内完成. 反应结束后, 邻甲基苯磺酸铜经简单相分离可多次重复使用, 催化活性无明显下降. 产物结构经IR, 1H NMR, 元素分析进行表征.  相似文献   

6.
通过焙烧钼酸铵和六次甲基四胺(HMT)生成的络合物,制备β-Mo_2C。在此基础上加入Ni助剂制备了Ni_3Mo_3N/β-Mo_2C双金属碳化物催化剂。采用XRD、SEM、HRTEM、低温氮吸附、元素分析等方法对催化剂进行了表征,考察了其合成气甲烷化反应性能。结果表明,β-Mo_2C有较高的CO转化率,但CO转化率和CH_4选择性分别从第10h的75.93%和36.79%降低到了第100h的67.41%和33.54%。因此,β-Mo_2C活性不够稳定且CH_4选择性较低。而Ni助剂的加入显著提高了催化剂的甲烷化活性及稳定性,使CO转化率和CH_4选择性分别从第10h的83.15%和46.64%升高到了第100h的92.51%和57.23%。这是因为Ni助剂的加入有助于生成Ni_3Mo_3N,新生成的Ni_3Mo_3N有利于甲烷化反应。  相似文献   

7.
用漫反射傅里叶红外光谱法研究了Ni-Ru-稀土/ZrO2多组分催化体系作用下的二氧化碳甲烷化反应机理,结果表明,碳酸根、甲酸根和一氧化碳是催化剂表达可以检出的吸附物种,其中表面的含氧酸类物种是催化反应的主要中间物,二氧化碳通过与载体表面羟基的作用转化为含氧酸根类物种吸附于催化剂表面,并进一步氢解为甲烷,反应中生成的少量一氧化碳可能来源于表面含氧酸根氢解为甲烷的副反应,含不同稀土的多组分催化剂作用下  相似文献   

8.
采用液相还原法制备非负载型镍催化剂,将非负载型镍催化剂分散在液相供氢溶剂十氢萘中,催化合成气甲烷化反应。在高压反应釜内,考察了反应温度、物质的量比等操作条件下,镍催化剂催化合成气甲烷化反应的反应活性。并对催化剂进行XRD、SEM、H2-TPR表征分析。研究结果表明,在330℃、催化剂用量为2%时,产品气中甲烷含量可达89.39%,CO和H2的转化率分别为94.56%和92.60%;催化剂用量为4%时,产品气中甲烷含量可高达94.26%,CO的转化率可达到99%以上。合成气甲烷化反应的最佳操作温度为330℃,H2/CO物质的量比最佳为2.20~2.67。  相似文献   

9.
用漫反射傅里叶红外光谱法研究了Ni-Ru-稀土/ZrO2多组分催化体系作用下的二氧化碳甲烷化反应机理.结果表明,碳酸根、甲酸根和一氧化碳是催化剂表面可以检出的吸附物种,其中表面的含氧酸根类物种是催化反应的主要中间物.二氧化碳通过与载体表面羟基的作用转化为含氧酸根类物种吸附于催化剂表面,并进一步氢解为甲烷.反应中生成的少量一氧化碳可能来源于表面含氧酸根氢解为甲烷的副反应.含不同稀土的多组分催化剂作用下的二氧化碳甲烷化过程有相同的反应机理.  相似文献   

10.
梁国明  任译 《化学学报》2005,63(23):2163-2168
采用超分子-连续介质(PCM)模型,在密度泛函B3LYP/6-311++G**水平上对水溶液中亚硝基甲烷异构化反应的机理进行了理论研究.结果表明,在水溶液中亚硝基甲烷可以通过两条反应途径(Ⅰ和Ⅱ)经质子迁移得到更稳定的重排产物--反式甲醛肟,但优势反应途径与在气相反应不同.在水溶液中亚硝基甲烷异构化反应最有可能的途径Ⅰ是通过氢迁移先生成顺式甲醛肟,然后绕N-O键旋转生成更稳定的反式甲醛肟.并且由于水分子的催化作用使得反应活化能从气相中240.6和196.2 kJ/mol分别降低至水溶液中的61.7和92.1 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号