首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Swelling of regenerated cellulose in nonalkali aqueous solutions containing lithium chloride and urea (LiCl/urea/water) was examined. The effect of solution concentration on fiber properties was studied using microscopy, weight gain (swelling), and mechanical strength tests. The regenerated cellulose samples included lyocell fibers, viscose fibers, and fibers spun from alkali. The change in the mechanical properties of treated fibers was smaller than that of fibers treated with alkali to the same level of swelling. The degree of swelling in these solutions was related to the propensity for the formation of Li–cellulose coordination complexes, and these were enhanced by reductions in both urea and water content.  相似文献   

2.
Halloysite nanotubes (HNTs) were added to cellulose NaOH/urea solution to prepare composite hydrogels using epichlorhydrine crosslinking at an elevated temperature. The shear viscosity, mechanical properties, microstructure, swelling properties, cytocompatibility, and drug delivery behavior of the cellulose/HNT composite hydrogels were investigated. The viscosity of the composite solution increases with the addition of HNT. The compressive mechanical properties of composite hydrogels are significantly improved compared with pure cellulose hydrogel. The compressive strength of the composite hydrogels with 66.7% HNTs is 128 kPa, while that of pure cellulose hydrogel is only 29.8 kPa in compressive strength. Rheological measurement suggests the resistance to deformation is improved for composite hydrogels. X-ray diffraction and Fourier transform infrared spectroscopy show that the crystal structure and chemical structure of HNT are not changed in the composite hydrogels. Hydrogen bonding interactions between HNT and cellulose exist in the composites. A porous structure of the composite hydrogels with pore size of 200–400 μm was found by scanning electron microscopy. The addition of HNT leads to decreased swelling ratios in NaCl solution and pure water for the composite hydrogels. Cytotoxicity assays show that the cellulose/HNT composite hydrogels have a good biocompatibility with MC3T3-E1 cells and MCF-7 cells. Curcumin is further loaded into the composite hydrogel via physical adsorption. The curcumin-loaded composite hydrogels show a strong inhibition effect on the cancer cells. All the results illustrate that the cellulose/HNT composite hydrogels have promising applications such as anticancer drug delivery systems and anti-inflammatory wound dressings.  相似文献   

3.
The mechanical, physical, and chemical properties of recycled pulps were evaluated after a series of treatments designed to improve and/or modify the pulp characteristics. Tensile strength, bursting strength, and apparent density of the pulps decreased with recycling. However, the tear strength, in most cases, increased after the first recycle and then decreased after the second recycle. Carboxyl content and WRV of pulps also decreased with recycling. Chemical treatments did not increase the bonding ability of recycled pulps and, in most cases, decreased the physical properties of the pulps. Altering the physical state of the cellulose microstructure through additional swelling did not appear to be a significant factor for strength restoration. It may be that the hemicelluloses plan a greater role in recycling than originally thought.  相似文献   

4.
The demand for more ecological, highly engineered hydrogel beads is driven by a multitude of applications such as enzyme immobilization, tissue engineering and superabsorbent materials. Despite great interest in hydrogel fabrication and utilization, the interaction of hydrogels with water is not fully understood. In this work, NMR relaxometry experiments were performed to study bead–water interactions, by probing the changes in bead morphology and surface energy resulting from the incorporation of carboxymethyl cellulose (CMC) into a cellulose matrix. The results show that CMC improves the swelling capacity of the beads, from 1.99 to 17.49, for pure cellulose beads and beads prepared with 30% CMC, respectively. Changes in water mobility and interaction energy were evaluated by NMR relaxometry. Our findings indicate a 2-fold effect arising from the CMC incorporation: bead/water interactions were enhanced by the addition of CMC, with minor additions having a greater effect on the surface energy parameter. At the same time, bead swelling was recorded, leading to a reduction in surface-bound water, enhancing water mobility inside the hydrogels. These findings suggest that topochemical engineering by adjusting the carboxymethyl cellulose content allows the tuning of water mobility and porosity in hybrid beads and potentially opens up new areas of application for this biomaterial.  相似文献   

5.
An enzymatic treatment with cellulases fromTrichoderma viride was investigated in its effect on the pore structure of different types of bead cellulose. One objective of this study was to establish a suitable procedure for combined enzymatic treatment and solvent exchange that would restore the original pore structure which the beads had before drying without causing major losses in mechanical stability. Another aim was to further increase the accessible pore space and internal surface area for separation of large molecular weight compounds with regard to Chromatographic applications. Finally, an attempt was made to extend the findings for unsubstituted beads to the derivatives carboxymethyl (CM) and diethylaminoethyl (DEAE) cellulose beads. The enzymatically treated samples were characterized by microscopic methods and porosity measurements such as mercury porosimetry, nitrogen sorption and size exclusion chromatography. It was found that under controlled conditions the low-porosity surface layer of dried beads could be removed making the internal pore space accessible without reducing the resistance to deformation of the beads. Additionally, a shift in pore size distribution towards larger pores was observed. Supplementary swelling treatments in solvents of high swelling power could substantially restore the former porosity of the dried beads but did not enhance the accessibility to the cellulases to a considerable extent. Internal pore volume and surface area of the derivatives were dramatically increased in the case of DEAE upon enzymatic hydrolysis, however, at the expense of mechanical stability, whereas CM was found to be less affected.  相似文献   

6.
Interpenetrating polymer network (IPN) strategy was developed to fabricate novel hydrogels composed of cellulose and poly(N‐isopropylacrylamide) (PNIPAAm) with high mechanical strength and adjustable thermosensitivity. Cellulose hydrogels were prepared by chemically cross‐linking cellulose in NaOH/urea aqueous solution, which were employed as the first network. The second network was subsequently obtained by in situ polymerization/cross‐linking of N‐isopropylacrylamide in the cellulose hydrogels. The results from FTIR and solid 13C NMR indicated that the two networks co‐existed in the IPN hydrogels, which exhibited uniform porous structure, as a result of good compatibility. The mechanical and swelling properties of IPN hydrogels were strongly dependent on the weight ratio of two networks. Their temperature‐sensitive behaviors and deswelling kinetics were also discussed. This work created double network hydrogels, which combined the advantages of natural polymer and synthesized PNIPAAm collectively in one system, leading to the controllable temperature response and improvement in the physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Sol–gel transition of cellulose solution in NaOH/urea aqueous solution with the addition of epichlorohydrin (ECH) was investigated by rheological means. The gelation was controlled by a synergy of chemical and physical cross-linking processes, namely, the etherification reaction between cellulose and ECH as well as the self-association and entanglement of cellulose chains via hydrogen bonding re-construction in NaOH/urea. The results revealed that the cross-linker concentration, cellulose concentration and temperature played important roles in the gelation behavior. The gel time decreased with increasing either ECH or cellulose concentration, and the gel temperature dropped from 38 to 28 °C with an increase of cellulose concentration from 4 to 6 wt%, i. e. easier gelation was reached with higher cross-linker concentration, cellulose concentration or temperature, since higher cross-linker or cellulose concentration led to more network junctions via chemical or physical cross-linking, while higher temperature was favorable to both the etherification reaction and re-construction of cellulose hydrogen bonds. The compressive modulus of cellulose/ECH hydrogels was improved a lot by increasing either cellulose or ECH concentration, indicating the chemical cross-linking obviously improved the mechanical property, on the other hand, the swelling property could be tunable by changing the gelation parameter. This work supplied useful information to the control and optimization of the structure and properties of cellulose based hydrogels.  相似文献   

8.
The aim of this study was to develop cellulose nanofibers with hydrophobic surface characteristics using chemical modification. Kenaf fibers were modified using acetic anhydride and cellulose nanofibers were isolated from the acetylated kenaf using mechanical isolation methods. Fourier transform infrared spectroscopy (FTIR) indicated acetylation of the hydroxyl groups of cellulose. The study of the dispersion demonstrated that acetylated cellulose nanofibers formed stable, well-dispersed suspensions in both acetone and ethanol. The contact angle measurements showed that the surface characteristics of nanofibers were changed from hydrophilic to more hydrophobic when acetylated. The microscopy study showed that the acetylation caused a swelling of the kenaf fiber cell wall and that the diameters of isolated nanofibers were between 5 and 50 nm. X-ray analysis showed that the acetylation process reduced the crystallinity of the fibers, whereas mechanical isolation increased it. The method used provides a novel processing route for producing cellulose nanofibers with hydrophobic surfaces.  相似文献   

9.
Regenerated cellulose films were laminated using very thin layers of the protein Bovine Serum Albumin (BSA) as an adhesive. The wet delamination strength was measured as functions of pH, lamination time, temperature and pressure, as well as cellulose oxidation. Drying at elevated temperature (120 °C) was required for strong adhesion. Oxidation of the cellulose membranes to introduce surface carboxyl/aldehyde groups increased the wet delamination strength by 60%, implying that the peel failures happened at the protein/cellulose interface. The wet delamination force was independent of the pH and ionic strength of solutions used to apply the BSA; whereas adhesion decreased with increasing pH of the rewetting solution. Furthermore, the swelling of the BSA interplay region was also increased at high pH. It is proposed that covalent grafting of BSA onto the oxidized cellulose, and disulfide crosslinking within the protein layer contributed to wet adhesion.  相似文献   

10.
Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.  相似文献   

11.
Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1?25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).  相似文献   

12.
Polysaccharide‐based thermo‐responsive material was prepared by grafting PNIPAAm onto hybrid alginate beads, in which a biomineralized polyelectrolyte layer was constructed aiming to enhance the mechanical strength and ensure higher graft efficiency. XPS results demonstrated that the incorporation of PNIPAAm to the hybrid beads was successful, and the PNIPAAm‐grafted beads were more hydrophilic than the ungrafted ones as indicated by their swelling behavior. The drug release behaviors revealed that the grafted beads were both thermo‐ and pH‐sensitive, and the PNIPAAm existed in the pores of the alginate beads acted as the “on–off” gates: the pores of the beads were covered by the stretched PNIPAAm to delay the drug release at 25°C and opened to accelerate the drug release at 37°C because of the shrinking of PNIPAAm molecules. This paper would be a useful example of grafting thermo‐responsive polymers onto biodegradable natural polymer substrate. The obtained beads provide a new mode of behavior for thermo‐responsive “smart” polysaccharide materials, which is highly attractive for targeting drug delivery system and chemical separation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Cellulose acetate (CA) with a degree of substitution of 1.7 was modified with caprolactone (CL) under various reaction conditions in an internal mixer. Processing temperature changed from 120 to 220 °C, while reaction time varied between 5 and 45 min. The composition and structure of the polymer was analyzed by various methods including FTIR, MALDI-TOF and NMR spectroscopy and its mechanical characteristics were determined by dynamic mechanical analysis and tensile testing. The results indicate that homopolymerization occurs under relatively mild conditions, while grafting requires higher temperatures and longer times. Grafted polycaprolactone (gPCL) chains are attached mainly to positions 2 and 6 of the glucose ring and their length increases with increasing reaction time and temperature, but the chains are always much shorter than those obtained in solution polymerization. Changes in the degree of substitution during grafting are small indicating that homopolymerization proceeds easier than grafting. Grafting seems to be easier in cellulose acetate with a larger degree of substitution in spite of the smaller number of active -OH groups present. Internal plasticization is more efficient than the external plasticizing effect of monomeric caprolactone. Plasticization results in a decrease of stiffness and strength, but deformability increases only slightly.  相似文献   

14.
A method of preparing model cellulose surfaces by the Langmuir–Blodgett (LB) technique with horizontal dipping procedure has been developed. The primary aim for the use of these surfaces was adsorption studies performed with the quartz crystal microbalance with dissipation (QCM-D) instrument. Hydrophobised cellulose (trimethylsilyl cellulose, TMSC) was deposited on the hydrophobic, polystyrene-coated QCM-D crystal. After 15 dipping cycles, the TMSC film fully covers the crystal surface. TMSC can easily be hydrolysed back to cellulose with acid hydrolysis. With this method a smooth, rigid, thin and reproducible cellulose film was obtained. Its morphology, coverage, chemical composition and wetting was further characterised using atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), and contact angle measurements. The swelling behaviour and the stability of the cellulose film in aqueous solutions at different ionic strengths were studied using the QCM-D instrument. The swelling/deswelling properties of the cellulose film were those expected of polyelectrolytes with low charge density; some swelling occurred in pure water and the swelling decreased when the ionic strength was increased. No significant layer softening was detected during the swelling. The effect of electrolyte concentration and polymer charge density on the adsorption of cationic polyelectrolytes on the cellulose surface was also investigated. At low electrolyte concentration less of the highly charged PDADMAC was adsorbed as compared to low charged C-PAM. The adsorbed amount of PDADMAC increased with increasing ionic strength and a more compact layer was formed while the effect of electrolyte concentration on the adsorption of C-PAM was not as pronounced.  相似文献   

15.
A technique of immobilizing an enzyme/antibody was developed using cellulose hydrogel prepared from an aqueous alkali-urea solvent. Partial oxidation by sodium periodate activated the cellulose gel for introducing aldehyde groups. Proteins were covalently introduced to cellulose gel by a Schiff base formation between the aldehyde and the amino groups of proteins, and stabilized by a reduction of imines. Coloring reactions confirmed the high activity of the immobilized enzymes. The activity of the immobilized enzymes increased with aldehyde content, but the effect leveled off at a low degree of oxidation, at approximately 8.1 of oxidized glucose/100 glucose unit. The amount of immobilized peroxidase calculated from the activity was 8.0 ng/g for an aldehyde content of 0.18 mmol/g: 14.6 ng/g for both 0.46 mmol/g and 1.04 mmol/g. The same method could be applied to the peroxidase antibody. Thus, various active proteins could be immobilized on cellulose gels by mild and facile processing. Owing to high mechanical and chemical stability of cellulose, this technique and resulting materials are potentially useful in biochemical processing and sensing technologies.  相似文献   

16.
蔡杰  张俐娜 《高分子科学》2016,34(10):1281-1289
High strength cellulose composite films with antibacterial activities were prepared by dispersing montmorillonites (MMT) into cellulose solution in LiOH/urea aqueous solvent followed by regeneration in ethanol coagulation bath, and then by soaking in 5 wt% hexadecylpyridine bromide ethanol solutions to induce the antibacterial action. The cellulose/MMT composite films were characterized by field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, FTIR, UV-spectra, wide angle X-ray diffraction and mechanical test. The results revealed that MMT was dispersed well in the cellulose matrix to form layer structure with a thickness of approximately 3 nm. The mechanical properties of the cellulose/MMT composite films were significantly improved to achieve 132 MP for tensile strength as a result of the MMT delamination. The hexadecylpyridine bromide was fixed well in the cellulose/MMT matrix through cation exchange, leading to the excellent antibacterial activities against Staphylococcus aureus and Escherichia coli, which is important in their practical applications.  相似文献   

17.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   

18.
Multilayer hydrogels were prepared by frontal photopolymerization of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid using hydrophilic reactive microgels (HRM) as crosslinkers instead of conventional crosslinkers. The hydrophilic microgels (HM) were prepared by inverse emulsion photopolymerization and then were chemical modified by N-methylolacrylamide (NMA) to obtain HRM with CC double bonds. The HM and HRM was characterized by dynamic light scattering measurements, SEM, TEM and FTIR, respectively. It was found that the resulting multilayer hydrogels showed high fracture strength and high tensile elongation along parallel direction. However their fracture strength and tensile elongation along perpendicular direction was very weak. The swollen multilayer hydrogels were about 1.0–2.0 mm in thickness, the maximal equilibrium swelling degree was only 30.45. The multilayer hydrogels were characterized by DSC, TEM and XRD, respectively. The swelling property and mechanical strength of some typical multilayer hydrogels were studied.  相似文献   

19.
A commercial regenerated bead cellulose was suspended in water at pH 4.8, and oxidized with NaClO2 used as a primary oxidant and catalytic amounts of NaClO and 4-acetamide-2,2,6,6-tetramethylpiperidinyl-1-oxyl radical. Carboxylate groups were formed up to 1.87 mmol/g in the beads by the oxidation of C6 primary hydroxyls to carboxylates without significant weight losses or morphological changes. The spherical shapes, highly porous surface structures consisting of nano-sized fibrils, and the cellulose II crystal structure of the original beads were mostly maintained by the oxidation, indicating that the carboxylate groups formed are predominantly present on the fibril surfaces. Cation-exchange behavior of the TEMPO-oxidized cellulose beads was compared with carboxymethylated cellulose beads, showing that the former was characteristic and superior to the latter in terms of adsorption of metal ions and cationic polymers. Especially, the TEMPO-oxidized cellulose beads had high adsorption behavior of lead ion and high-molecular-weight cationic polymers.  相似文献   

20.
The design of economical adsorbents to remove pollutants from contaminated water is attracting more attention. In this study, cellulose was successfully extracted from Robinia Pseudoacacia seed fibers and immobilized onto chitosan beads. The prepared spherical beads were then used for the biosorption of methylene blue dye from aqueous media. Samples were investigated using several analytical methods, namely FT-IR, XRD, EDX, SEM, and TGA analyses. The adsorption experiments showed that combining cellulose with chitosan improved the removal of methylene blue. The maximum uptake amount of methylene blue using cellulose–chitosan composite beads was 55 mg/g. However, it was about 35 mg/g at 20 °C for chitosan beads. The kinetic data complied strongly with the pseudo-second order equation, suggesting that the biosorption phenomenon has predominantly a chemical nature. Overall, the current study has shown a promising technique to design new adsorbents from abundant natural polymers for eliminating cationic dyes from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号