首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
大豆分离蛋白-十二烷基硫酸钠微胶囊的制备与表征   总被引:1,自引:0,他引:1  
朱晓丽  刘维鹏  顾相伶  孔祥正 《化学学报》2009,67(13):1497-1502
以大豆分离蛋白(SPI)和十二烷基硫酸钠(SDS)为壁材, 以十六烷为芯材, 通过复凝聚法制备了微胶囊. 首先确定了SPI和SDS发生复凝聚的适宜pH、SPI/SDS配比、壁材浓度等. 在确定的实验条件下进行复凝聚, 凝聚物产率可达85%. 改变搅拌转速和芯壁比, 考察它们对微胶囊性能的影响. 用光学显微镜观察了微胶囊形貌. 用气相色谱测定了微胶囊的载药量和包覆率. 芯壁比为2、搅拌转速为400 r/min时所制备微胶囊的载药量可达61%. 随着芯壁比的增大, 微胶囊粒径及载药量都逐渐增大.  相似文献   

2.
WU  Ke-Gang CHAI  Xiang-Hua CHEN  Yue 《中国化学》2005,23(11):1569-1572
To improve the oxidative stability and application of fish oil, it was microencapsulated by simple coacervation followed by spray drying. Simple coacervation took place by adding malt dextrin into the emulsion of fish oil and hydroxypropyl methylcellulose (HPMC) solution. Influences of several process parameters on the microencapsulation were evaluated and the oxidative stability and microstructure of microcapsules were analyzed. Results showed that the coacervation could be observed only when dextrose equivalent value (DE value) of malt dextrin, concentration of HPMC solution and fish oil percentage in microcapsules were no more than 20. 5% and 40%, respectively. Moreover, microencapsulation efficiency was higher at HPMC solution concentration of 4% and fish oil percentage of less than 30%. The oxidative stability of fish oil was improved by the microencapsulation and done best in the ease of replacing malt dextrin by 40% with acacia. Scanning electronic microscopic photographs showed that the microcapsule obtained was a round, smooth and hollow microcapsule with its wall made up of innumerable small and solid submicrocapsules with the core of fish oil.  相似文献   

3.
Monodisperse polymelamine microcapsules were prepared by phase separation method. Control of microcapsule diameter was investigated using the uniform-sized oil-in-water emulsion droplets as the capsule core. The monodisperse emulsion droplets were prepared using the Shirasu porous glass (SPG) membrane emulsification technique. The effects of the diameter of the oil droplet and concentration of sodium dodecyl sulfate (SDS), which is a typical emulsifier in SPG membrane emulsification, on microencapsulation were investigated. The microcapsules were aggregated when oil droplets with small size were microencapsulated at high SDS concentration. To reduce the SDS concentration, the creamed emulsion was used. The monodisperse polymelamine microcapsules were successfully prepared by using the creamed emulsion. The microcapsule diameter was almost similar to the diameter of the encapsulated oil droplet. The coefficient of variation values was about 10% for all microcapsules prepared in this study. Control of microcapsule diameter was achieved in the range of 5–60 μm.  相似文献   

4.
In this study, we investigated the use of microchannel (MC) emulsifications in producing monodisperse gelatin/acacia complex coacervate microcapsules of soybean oil. This is considered to be a novel method for preparing monodisperse O/W and W/O emulsions. Generally, surfactants are necessary for MC emulsification, but they can also inhibit the coacervation process. In this study, we investigated a surfactant-free system. First, MC emulsification using gelatin was compared with that using decaglycerol monolaurate. The results demonstrated the potential use of gelatin for MC emulsification. MC emulsification experiments conducted over a range of conditions revealed that the pH of the continuous phase should be maintained above the isoelectric point of the gelatin. A high concentration of gelatin was found to inhibit the production of irregular-sized droplets. Low-bloom gelatin was found to be suitable for obtaining monodisperse emulsions. Finally, surfactant-free monodisperse droplets prepared by MC emulsification were microencapsulated with coacervate. The microcapsules produced by this technique were observed with a confocal laser scanning microscope. Average diameters of the inner cores and outer shells were 37.8 and 51.5 microm; their relative standard deviations were 4.9 and 8.4%.  相似文献   

5.
Complex coacervation of gelatin A and sodium alginate was carried out to obtain the maximum coacervate yield. Turbidity and coacervate yield (%) measurements were carried out to support the ratio of the two polymers and pH that produced maximum coacervation. The optimum ratio between gelatin A-sodium alginate and pH to form the maximum coacervate complex was found to be 3.5:1 and 3.5–3.8, respectively. Olive oil microencapsulation was carried out at the optimized ratio and pH. Microcapsules were crosslinked by using glutaraldehyde. Scanning electron microscopy studies confirmed the formation of free flowing spherical microcapsules of different sizes. The size of microcapsules increased with the increase in the concentration of the polymer. The encapsulation efficiency and the release rates of olive oil were dependent on the amount of crosslinker, oil loading and polymer concentration. Thermogravimetric study revealed improvement of thermal stability with crosslinking. Fourier Transform Infrared Spectroscopy study showed that there was no significant interaction between olive oil and gelatin-alginate complex.  相似文献   

6.
A simple route is presented to prepare core-shell Eudragit microcapsules through a solvent extraction method with the use of microsieve emulsification. Droplets from a solution of Eudragit FS 30D (a commercial copolymer of poly(methyl acrylate-co-methyl methacrylate-co-methacrylic acid) 7:3:1) and hexadecane in dichloromethane are dispersed into water, using a micro-engineered membrane with well-defined pores, in a cross-flow setting. The dichloromethane is extracted from the droplets, which induces demixing in the droplets, leading to a hexadecane-rich core, and an Eudragit-rich shell. The obtained microcapsules have a narrow size distribution due to the microsieve emulsification process. The capsules have a porous shell as shown by SEM and AFM measurements. Their porosity and pore size is dependent on the ratios of Eudragit and hexadecane in the dispersed phase. At pH 7.1 and above Eudragit (FS 30D) dissolves in water; this pH change is used to release the contents of the microcapsule.  相似文献   

7.
Abstract

The potential of polytetrafluoroethylene (PTFE) membranes as water‐in‐oil (W/O) emulsification devices was investigated to obtain uniformly sized droplets and to convert them into microcapsules and polymer particles via subsequent treatments. Uniform W/O emulsion droplets have not been achieved using glass membranes unless the membrane was rendered hydrophobic by treatment with silanes. If a PTFE membrane is capable of providing uniform droplets for a W/O emulsion, a coordinated membrane emulsification system can be established since glass membranes have been so successful for O/W (oil‐in‐water) emulsification. In order to examine the feasibility of PTFE membrane emulsification, O/W and W/O emulsion characteristics prepared using PTFE membranes were compared with those prepared by the conventional SPG (Shirasu porous glass) membrane emulsification method. A 3 wt.% sodium chloride solution was dispersed in kerosene using a low HLB surfactant. Effects of the membrane pore size, permeation pressure, and the type of emulsifiers and concentration on the droplet size and on the size distribution (CV, coefficient of variation) were investigated. The CV of the droplets was fairly low, and the average droplet size was correlated with the critical permeation pressure of the dispersed phase, revealing that the PTFE membrane could be used as a one‐pass membrane emulsification device. Low CV values were maintained with a Span 85 (HLB = 1.8) concentration, 0.2–5.0 wt.% and a range of HLB from 1.8–5.0. For a brief demonstration of practical applications, nylon‐6,10 microcapsules prepared by interfacial polycondensation and poly(acrylamide) hydrogels from inverse suspension polymerization are illustrated.  相似文献   

8.
Uniform-sized biodegradable PLA/PLGA microcapsules loading recombinant human insulin (rhI) were successfully prepared by combining a Shirasu Porous Glass (SPG) membrane emulsification technique and a double emulsion-evaporation method. An aqueous phase containing rhI was used as the inner water phase (w1), and PLA/PLGA and Arlacel 83 were dissolved in a mixture solvent of dichloromethane (DCM) and toluene, which was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a SPG membrane into an outer water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 droplets. The solid polymer microcapsules were obtained by simply evaporating solvent from droplets. Various factors of the preparation process influencing the drug encapsulation efficiency and the drug cumulative release were investigated systemically. The results indicated that the drug encapsulation efficiency and the cumulative release were affected by the PLA/PLGA ratio, NaCl concentration in outer water phase, the inner water phase volume, rhI-loading amount, pH-value in outer water phase and the size of microcapsules. By optimizing the preparation process, the drug encapsulation efficiency was high up to 91.82%. The unique advantage of preparing drug-loaded microcapsules by membrane emulsification technique is that the size of microcapsules can be controlled accurately, and thus the drug cumulative release profile can be adjusted just by changing the size of microcapsules. Moreover, much higher encapsulation efficiency can be obtained when compared with the conventional mechanical stirring method.  相似文献   

9.
A coacervation technique for microencapsulation using Eudragit Retard polymers [poly(methyl methacrylates) substituted by quaternary ammonium groups] as wall material is described, based upon phase separation using a cold chloroform-cyclohexane mixture together with polyisobutylene as a stabilizer. The effect of various parameters on the nature and properties of the microcapsules of potassium dichromate and paracetamol has been studied, in particular the alteration in wall content and structure and release rate of contents. The microcapsules are discrete, their properties are reproducible, and various degrees of sustained release are obtained.  相似文献   

10.
A novel emulsification method, microchannel (MC) emulsification, was developed for making monodispersed regular-sized droplets in our laboratory. An oil-in-water dispersed system, in which phosphate buffer was used as the continuous phase, sodium dodecyl sulfate (SDS) as the surfactant, and clove oil as the dispersed phase, was prepared by this technique. The average diameter of oil droplets was about 20 μm, with a narrow size distribution. The stability characteristics of the dispersed oil droplets were investigated by an optical microscope and kinetic light scattering method. The stability of the dispersed oil droplets depended on the SDS concentration. When the SDS concentration was above the critical micelle concentration (CMC), the turbidity of the dispersed solution sharply increased at the initial stage. Optical microscopic observation has confirmed that a part of the oil droplets broke up with time, and submicrometer droplets appeared. On the other hand, when the SDS concentration was below the CMC, the turbidity of the dispersed solution had little change in the initial stage, showing that the oil droplets were very stable. The effect of ion concentration was also examined. The results showed that the stability of the oil droplets depended on the balance of the Van der Waals attraction and electrical repulsion between the oil droplets in low ion concentration. Copyright 2001 Academic Press.  相似文献   

11.
We introduce a facile and versatile approach for the formation of ball-like polymer–inorganic patchy microcapsules with a tunable shell by combining sol–gel chemistry of silica precursor and phase separation between the polymer and the precursor. Firstly, chloroform-in-water emulsion droplets containing poly(methyl methacrylate) (PMMA), silica precursor [tetraethyl orthosilicate (TEOS)] and co-surfactant sodium dioctyl sulfosuccinate (Aerosol OT or AOT) were prepared by shaking the mixture by hand. Due to the added AOT, water molecules diffuse into the chloroform droplets, and the tiny water droplets would coalesce gradually, triggering the formation of double emulsion droplets. Upon further solvent evaporation, the concentration of the polymer and the silica precursor in the oil shell of the double emulsions increases, leading to the phase separation between the polymer and the precursors (and partially formed silica through the hydrolysis and condensation of TEOS). Because of the confined geometry of the oil shell in the double emulsions, polymeric disc-like structures, stabilized by AOT, were dispersed in the silica precursors. Meanwhile, the silica precursor hydrolyzed and condensed when brought in contact with the aqueous solution, ultimately leading to the formation of a mineralized shell around the polymer domains and the hybrid patchy microcapsules. Effect of synthesis conditions, such as the amount of TEOS, AOT, and PMMA used, the pH value, and solvent evaporation rate on interfacial behavior of the solvent/water; and the morphology of the patchy microcapsules were investigated. Patchy microcapsules with tunable patch size and shape can be generated through tailoring the experimental parameters. Our study indicates that the hybrid patchy microcapsules can be formed by taking advantage of the sol–gel chemistry and the phase separation process, and the underlying generality of the synthesis procedure allows for a variety of applications, including drug storage, coatings, delivery, catalysis, and smart building blocks in self-assembling systems.  相似文献   

12.
Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core-shell particles were obtained with the oil as core, surrounded by a shell of Eudragit. Medium chain triglyceride (MCT oil) was encapsulated as relatively small droplets in the Eudragit matrix. The morphology of the formed capsules was investigated with optical and SEM microscopy. Extraction of the oil from the core-shell capsules with hexane resulted in hollow Eudragit capsules with porous shells. It was shown that the differences are related to the compatibility of the oils with the shell-forming Eudragit. An oil with poor compatibility yields microcapsules with a dense Eudragit shell on a single oil droplet as the core; oils having better compatibility yield porous Eudragit spheres with several oil droplets trapped inside.  相似文献   

13.
A new microencapsulation technique is presented in which cholesteryl nonanoate (CN)/poly(methyl methacrylate) (PMMA) microcapsules are produced by the induction of phase separation between CN and PMMA within the droplets during the polymerization. The concentration of CN is the most important factor determining the final morphology of the microcapsules. For example, a polynuclear type is obtained at a low concentration (<20 wt %), a mononuclear type is obtained at a medium concentration (20–30 wt %), and an irregular phase is obtained at a high concentration (>40 wt %). To evaluate the effectiveness of the technique for stabilizing an unstable drug, we selected retinol (vitamin A) as a model drug and loaded it into the CN/PMMA microcapsules. We used a process called solute codiffusion, in which a fine solvent emulsion containing the retinol was diffused uniformly into the CN/PMMA microcapsules. The loading efficiency of retinol was predicted successfully with the aid of a thermodynamic equation. In the thermal stability test of retinol, we found that an effective association with the CN phase was the most important factor determining the limit of its molecular stability. The technique reported in this article has great potential for the microencapsulation of soft materials via a simple process and for the stabilization of unstable drugs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2202–2213, 2004  相似文献   

14.
A novel method for microencapsulation of oil by coacervation is presented. The method employs segregative phase separation between sodium carboxymethyl cellulose (NaCMC) and a complex of hydroxypropylmethyl cellulose (HPMC) and sodium dodecylsulfate (SDS), which results in coacervate formation. Microstructural properties of the coacervate can be varied by tuning NaCMC-HPMC/SDS interaction, which is achieved by changing SDS concentration. Microcapsules preparation route is presented. Encapsulation efficiency and dispersion properties of microcapsules with coacervate shell of different properties and different oil content were tested. Microcapsules with smallest droplet size, the narrowest droplet size distribution, and with lowest extractability of encapsulated oil were obtained when NaCMC-HPMC/SDS interaction results in formation of the most compact coacervate shell, no matter of the encapsulated oil.  相似文献   

15.
Microchannel (MC) emulsification is a novel technique for preparing monodispersed emulsions. This study demonstrates preparing water-in-oil-in-water (W/O/W) emulsions using MC emulsification. The W/O/W emulsions were prepared by a two-step emulsification process employing MC emulsification as the second step. We investigated the behavior of internal water droplets penetrating the MCs. Using decane, ethyl oleate, and medium-chain triglyceride (MCT) as oil phases, we observed successful MC emulsification and prepared monodispersed oil droplets that contained small water droplets. MC emulsification was possible using triolein as the oil phase, but polydispersed oil droplets were formed from some of the channels. No leakage of the internal water phase was observed during the MC emulsification process. The internal water droplets penetrated the MC without disruption, even though the internal water droplets were larger than the resulting W/O/W emulsion droplets. The W/O/W emulsion entrapment yield was measured fluorometrically and found to be 91%. The mild action of droplet formation based on spontaneous transformation led to a high entrapment yield during MC emulsification.  相似文献   

16.
Relatively uniform-sized biodegradable poly(lactide) (PLA) microcapsules with various sizes were successfully prepared by combining a glass membrane emulsification technique and water-in-oil-in-water (w1/o/w2) double emulsion-solvent evaporation method. A water phase was used as the internal water phase, a mixture solvent of dichloromethane (DCM) and toluene dissolving PLA and Arlacel 83 was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a glass membrane into the external water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 double emulsion droplets. Then, the solid polymer microcapsules were obtained by simply evaporating solvent. The influence of process parameters on the size distribution of PLA microcapsules was investigated, with an emphasis on the effect of oil-soluble emulsifier. A unique phenomenon was found that a large part of emulsifier could adsorb on the interface of internal water phase and oil phase, which suppressed its adsorption on the surface of glass membrane, and led to the successful preparation of uniform-sized double emulsion. Finally, by optimizing the process parameters, PLA microcapsules with various sizes having coefficient of variation (CV) value under 14.0% were obtained. Recombinant human insulin (rhI), as a model protein, was encapsulated into the microcapsules with difference sizes, and its encapsulation efficiency and cumulative release were investigated. The result suggested that the release behavior could be simply adjusted just by changing precisely the diameters of microcapsule, benefited from the membrane emulsification technique.  相似文献   

17.
Microencapsulated phase change materials have attracted special attention due to their wide applications in saving and releasing energy. Here, microencapsulation of hexadecane (HD) in melamine formaldehyde shell was carried out through in situ dispersion polymerization in the aqueous media. Some important parameters such as stabilizer type and amount, surfactant amount, homogenization conditions as the critical affective factors on final particle size, morphology, and thermal resistance of the microcapsules were investigated extensively. The obtained microcapsules were concurrently analyzed by SEM, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques. SEM images showed that the best stabilization was achieved by polyvinyl alcohol. Also, particle size, as an indication of surface area for heat transfer properties, showed a decrement by increasing stabilizer amount, surfactant amount, and homogenization speed. The amount of entrapped HD and efficiencies of microencapsulation were determined by DSC, and the reason for observing such changes were discussed in detail. Thermal stability of the microcapsules as an important property for their performance was investigated, too. The results illustrated that an improved thermal stability would be obtained by an efficient stabilization in the emulsification step. Also the highest thermal stability up to 388 °C was reached at homogenization speed of 6,000 rpm. Finally, the optimized conditions for desirable encapsulation were proposed in such systems.  相似文献   

18.
Hydroxy-functionalized polymersomes (or block copolymer vesicles) were prepared via a facile one-pot RAFT aqueous dispersion polymerization protocol and evaluated as Pickering emulsifiers for the stabilization of emulsions of n-dodecane emulsion droplets in water. Linear polymersomes produced polydisperse oil droplets with diameters of ~50 μm regardless of the polymersome concentration in the aqueous phase. Introducing an oil-soluble polymeric diisocyanate cross-linker into the oil phase prior to homogenization led to block copolymer microcapsules, as expected. However, TEM inspection of these microcapsules after an alcohol challenge revealed no evidence for polymersomes, suggesting these delicate nanostructures do not survive the high-shear emulsification process. Thus the emulsion droplets are stabilized by individual diblock copolymer chains, rather than polymersomes. Cross-linked polymersomes (prepared by the addition of ethylene glycol dimethacrylate as a third comonomer) also formed stable n-dodecane-in-water Pickering emulsions, as judged by optical and fluorescence microscopy. However, in this case the droplet diameter varied from 50 to 250 μm depending on the aqueous polymersome concentration. Moreover, diisocyanate cross-linking at the oil/water interface led to the formation of well-defined colloidosomes, as judged by TEM studies. Thus polymersomes can indeed stabilize colloidosomes, provided that they are sufficiently cross-linked to survive emulsification.  相似文献   

19.
电子墨水微胶囊及电泳显示原型器件的制备   总被引:11,自引:0,他引:11  
TiO2 particles coated with polystyrene which were prepared via in situ polymerization and oil green dye were dispersed in tetrachloroethylene and xylene, the mixture came to be electrophoretic ink and was encapsulated in to microcapsules by complex coacervation from gelatin and a hydrolyzed copolymer of styrene and maleic anhydride(SMA). It was demonstrated that the membranes of the microcapsules were formed from nano sized coacervate droplets resulting from gelation and hydrolyzed SMA, which leads to a compact membrane structure. Microcapsules were characterized in terms of microstructure, morphologies by scanning electron microscopy(SEM). Electrophoretic display prototype was prepared by coating electrophoretic ink microcapsules slurry on ITO glass with nearly single layer and sealed by UV curable adhesires. The characters “Zheda” in Chinese was firstly displayed at a low volt 9 V D. C..  相似文献   

20.
Complex coacervation of whey protein(WP) with acacia gum(AG) was carried out in water with the presence of dodecyl acetate (DA),a component of insect sex pheromones,in order to obtain microcapsules with DA as the core material and WP-AG coacervate as the wall materials.Through variations in wall/core ratios,concentrations of the wall materials in capsule preparations,DA encapsulation was optimized,which showed a high DA encapsulation was achieved when coacervation was conducted at pH 3.5 with wall/core mass ratio at 3 combined with concentration of wall materials at 1.0 wt%.Morphology and the structure of DA loaded microcapsules were examined by scanning electron microscope,which showed the microcapsules were of core/shell structure with DA encapsulated in the inner of the microcapsules.DA release was examined and the behavior of the release was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号