首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Kajari Mazumdar 《Pramana》2007,69(5):801-807
The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations. Main results from the recently published studies of CMS collaboration are only included in this write-up. on behalf of the ATLAS and CMS Collaborations  相似文献   

2.
The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of the MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan β and the Higgs-boson mass scale, MA. We study the dependence of the 5σ discovery contours in the MA–tan β plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter μ, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of μ can shift the prospective discovery reach (and correspondingly the ”LHC wedge” region) by about Δtan β=10, we find that the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. We find that an accuracy of 1–4% should be achievable, which could make it possible in favorable regions of the MSSM parameter space to experimentally resolve the signals of the two heavy MSSM Higgs bosons at the LHC.  相似文献   

3.
The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3σ beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c2. At the upgraded TeVatron and at LHC the search for the Higgs boson will continue. At TeVatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb—1. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed.  相似文献   

4.
The investigation of the dynamics responsible for electroweak symmetry breaking is one of the prime tasks of the experiments at the CERN Large Hadron Collider (LHC). In this article, the potential of the ATLAS and CMS experiments for the discovery of a standard model Higgs boson and for Higgs bosons in the minimal supersymmetric extension is summarized. Emphasis is put on those studies which have been performed recently by the experimental collaborations using a realistic simulation of the detector performance. This includes a discussion of the search for Higgs bosons using the vector boson-fusion mode, a discussion on the measurement of Higgs boson parameters as well as a detailed review of the MSSM sector for different benchmark scenarios.  相似文献   

5.
We investigate the prospects for Central Exclusive Diffractive (CED) production of BSM Higgs bosons at the LHC using forward proton detectors installed at 220 m and 420 m distance around ATLAS and/or CMS. We update a previous analysis for the MSSM taking into account improvements in the theoretical calculations and the most recent exclusion bounds from the Tevatron. We extend the MSSM analysis to new benchmark scenarios that are in agreement with the cold dark matter relic abundance and other precision measurements. We analyze the exclusive production of Higgs bosons in a model with a fourth generation of fermions. Finally, we comment on the determination of Higgs spin–parity and coupling structures at the LHC and show that the forward proton mode could provide crucial information on the CP\mathcal{CP} properties of the Higgs bosons.  相似文献   

6.
We suggest a new CPX-derived scenario for the search for strangephilic MSSM Higgs bosons at the Tevatron and the LHC, in which all neutral and charged Higgs bosons decay predominantly into pairs of strange quarks and into a strange and a charm quark, respectively. The proposed scenario is realized within a particular region of the MSSM parameter space and requires large values of tan?β, where threshold radiative corrections are significant to render the effective strange-quark Yukawa coupling dominant. Experimental searches for neutral Higgs bosons based on the identification of b-quark jets or τ leptons may miss a strangephilic Higgs boson and its existence could be inferred indirectly by searching for hadronically decaying charged Higgs bosons. Potential strategies and experimental challenges to search for strangephilic Higgs bosons at the Tevatron and the LHC are discussed.  相似文献   

7.
This note summarizes many detailed physics studies done by the ATLAS and CMS Collaborations for the LHC, concentrating on processes involving the production of high mass states. These studies show that the LHC should be able to elucidate the mechanism of electroweak symmetry breaking and to study a variety of other topics related to physics at the TeV scale. In particular, a Higgs boson with couplings given by the Standard Model is observable in several channels over the full range of allowed masses. Its mass and some of its couplings will be determined. If supersymmetry is relevant to electroweak interactions, it will be discovered and the properties of many supersymmetric particles elucidated. Other new physics, such as the existence of massive gauge bosons and extra dimensions can be searched for extending existing limits by an order of magnitude or more.  相似文献   

8.
S. Dasu 《Pramana》2004,62(2):177-190
The large hadron collider (LHC) and its detectors, ATLAS and CMS, are being built to study TeV scale physics, and to fully understand the electroweak symmetry breaking mechanism. The Monte-Carlo simulation results for the standard model and minimal super symmetric standard model Higgs boson searches and parameter measurements are discussed. Emphasis is placed on recent investigations of Higgs produced in association with top quarks and in vector boson fusion channels. These results indicate that Higgs sector can be explored in many channels within a couple of years of LHC operation, i.e.,L = 30 fb−1. Complete coverage including measurements of Higgs parameters can be carried out with full LHC program.  相似文献   

9.
This article reviews recent measurements of the properties of the standard model (SM) Higgs boson using data recorded with the CMS detector at the LHC: its mass, width and couplings to other SM particles. We also summarise highlights from searches for new physical phenomena in the Higgs sector as they are proposed in many extensions of the SM: flavour violating and invisible decay modes, resonances decaying into Higgs bosons and searches for additional Higgs bosons.  相似文献   

10.
The Higgs boson search has shifted from LEP2 to the Tevatron and will subsequently move to the LHC. The current limits from the Tevatron and the prospective sensitivities at the LHC are often interpreted in specific MSSM scenarios. For heavy Higgs boson production and subsequent decay into or τ+τ, the present Tevatron data allow one to set limits in the MA–tan β plane for small MA and large tan β values. Similar channels have been explored for the LHC, where the discovery reach extends to higher values of MA and smaller tan β. Searches for MSSM charged Higgs bosons, produced in top decays or in association with top quarks, have also been investigated at the Tevatron and the LHC. We analyze the current Tevatron limits and prospective LHC sensitivities. We discuss how robust they are with respect to variations of the other MSSM parameters and possible improvements of the theoretical predictions for Higgs boson production and decay. It is shown that the inclusion of supersymmetric radiative corrections to the production cross sections and decay widths leads to important modifications of the present limits on the MSSM parameter space. The impact on the region where only the lightest MSSM Higgs boson can be detected at the LHC is also analyzed. We propose to extend the existing benchmark scenarios by including additional values of the higgsino mass parameter μ. This affects only slightly the search channels for a SM-like Higgs boson, while having a major impact on the searches for non-standard MSSM Higgs bosons.  相似文献   

11.
The little Higgs model provides an alternative to traditional candidates for new physics at the TeV scale. The new heavy gauge bosons predicted by this model should be observable at the CERN Large Hadron Collider (LHC). We discuss how the LHC experiments could test the little Higgs model by studying the production and decay of these particles.  相似文献   

12.
安芬芬  白羽  陈春晖  陈新  陈振兴  Joao Guimaraes da Costa  崔振崴  方亚泉  付成栋  高俊  高艳彦  高原宁  葛韶锋  顾嘉荫  郭方毅  郭军  韩涛  韩爽  何红建  何显柯  何小刚  胡继峰  徐士杰  金山  荆茂强  Susmita Jyotishmati  Ryuta Kiuchi  郭家铭  赖培筑  李博扬  李聪乔  李刚  李海峰  李亮  李数  李通  李强  梁浩  梁志均  廖立波  刘波  刘建北  刘涛  刘真  娄辛丑  马连良  Bruce Mellado  莫欣  Mila Pandurovic  钱剑明  钱卓妮  Nikolaos Rompotis  阮曼奇  Alex Schuy  单连友  史静远  史欣  苏淑芳  王大勇  王锦  王连涛  王贻芳  魏彧骞  许悦  杨海军  杨迎  姚为民  于丹  张凯栗  张照茹  赵明锐  赵祥虎  周宁 《中国物理C(英文版)》2019,(4)
The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics.The Higgs boson will be the subject of extensive studies of the ongoing LHC program.At the same time,lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC,with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson.The Circular Electron Positron Collider(CEPC)is one of such proposed Higgs factories.The CEPC is an e~+e~- circular collider proposed by and to be hosted in China.Located in a tunnel of approximately 100 km in circumference,it will operate at a center-of-mass energy of 240 GeV as the Higgs factory.In this paper,we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements.  相似文献   

13.
In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible backgrounds. Realistic simulations have been used in the context of CMS experiment to devise a set of event selection criteria which eventually enhances the signal contribution compared to the background processes in characteristic distributions. In cut-based analysis, multi-jet background is found to overwhelm the signal in the finally selected sample. With an integrated luminosity of 10 fb−1, an upper limit of 36% on the branching ratio can be obtained for Higgs boson with a mass of 120 GeV/c2 for LHC energy of 14 TeV. Since the analysis essentially depends on the background estimation, detailed studies have been done to determine the background rates from real data.  相似文献   

14.
B. Mellado 《Pramana》2009,72(1):15-22
These proceedings summarize the sensitivity for the CMS and ATLAS experiments at the LHC to discover a Standard Model Higgs boson with relatively low integrated luminosity per experiment. The most relevant discovery modes are dealt with. A brief discussion on the expected performance from these experiments in searches for one or more of the Higgs bosons from the minimal version of the supersymmetric theories is also included.   相似文献   

15.
One of the most actual goals in high energy physics is reaching the state of deconfinement of hadronic matter and studying the properties of resultant quark-gluon plasma (QGP). Jet production, as well as other hard processes, is considered to be an efficient probe for formation of QGP in future experiments on heavy ion collisions at LHC.The Compact Muon Solenoid (CMS) is the general purpose detector designed to run at the LHC and optimized mainly for the search of the Higgs boson in proton-proton collisions. However, a good muon system and electromagnetic and hadron calorimeters with fine granularity gives the possibility to cover several important aspects of the heavy ion physics. The production of heavy quarkonia Γ, Γ′, Γ″ through their muon decay channel and the energy loss of hard jets, are valuable processes for studying the phase transition from the hadronic matter to the plasma of deconfined quarks and gluons.  相似文献   

16.
Stefano Moretti 《Pramana》2003,60(2):369-376
We outline several improvements to the experimental analyses carried out at Tevatron (Run 2) or simulated in view of the large hadron collider (LHC) that could increase the scope of CDF/D0 and ATLAS/CMS in detecting charged Higgs bosons.  相似文献   

17.
We investigate the phenomenology of the Higgs sector of the minimal BL extension of the Standard Model at a future e + e Linear Collider. We consider the discovery potential of both a sub-TeV and a multi-TeV machine. We show that, within such a theoretical scenario, several novel production and decay channels involving the two physical Higgs states, precluded at the LHC, could experimentally be accessed at such machines. Amongst these, several Higgs signatures have very distinctive features with respect to those of other models with enlarged Higgs sector, as they involve interactions of Higgs bosons between themselves, with Z′ bosons as well as with heavy neutrinos. In particular, we present the scope of the Z′ strahlung process for single and double Higgs production, the only suitable mechanism enabling one to access an almost decoupled heavy scalar state (therefore outside the LHC range).  相似文献   

18.
We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127?GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.  相似文献   

19.
HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a $\chi ^2$ measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at $m_H\approx 125.5$  GeV.  相似文献   

20.
The experiments at the large hadron collider (LHC) will probe for Higgs boson in the mass range between the lower bound on the Higgs mass set by the experiments at the large electron positron collider (LEP) and the unitarity bound (∼1 TeV). Strategies are being developed to look for signatures of Higgs boson and measure its properties. In this paper results from full detector simulation-based studies on Higgs discovery from both ATLAS and CMS experiments at the LHC will be presented. Results of simulation studies on Higgs coupling measurement at LHC will be discussed. on behalf of the CMS and the ATLAS Collaborations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号