首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu W  Wang CF  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(25):10058-10065
Using the tricyano precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl) hydroborate) (1), four new tetranuclear clusters, [(Tp)Fe(CN)3Cu(Tp)]2.2H2O (2), [(Tp)Fe(CN)3Cu(bpca)]2.4H2O (3) (bpca = bis(2-pyridylcarbonyl)amidate anion), [(Tp)Fe(CN)3Ni(tren)]2(ClO4)2.2H2O (4) (tren = tris(2-amino)ethylamine), and [(Tp)Fe(CN)3Ni(bipy)2]2[(Tp)Fe(CN)3]2.6H2O (5) (bipy = 2,2'-bipyridine), have been synthesized and structurally characterized. The four clusters possess similar square structures, where FeIII and MII (M = CuII or NiII) ions alternate at the rectangle corners. There exist intermolecular - stacking interactions through pyrazolyl groups of Tp- ligands in complexes 2 and 4, which lead to 1D chain structures. Complex 5 shows a 3D network structure through the coexistence of - stacking effects and hydrogen-bonding interactions. Magnetic studies show intramolecular ferromagnetic interactions in all four clusters. The exchange parameters are +11.91 and +1.38 cm(-1) for clusters 2 and 3, respectively, while uniaxial molecular anisotropy can be detected in complex 3 due to the distorted core in its molecular structure. Complex 4 has a ground state of S = 3 and shows SMM behavior with an effective energy barrier of U = 18.9 cm(-1). Unusual spin-glass-like dynamic relaxations are observed for complex 5.  相似文献   

2.
Wen HR  Wang CF  Song Y  Gao S  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8942-8949
With the use of the tailored cyanometalate precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl)hydroborate) as the building block to react with fully solvated Cu(II), Co(II), and Ni(II) cations, four one-dimensional (1D) heterobimetallic cyano-bridged chain complexes of squares, [(Tp)2Fe(III)2(CN)6Cu(CH3OH).2CH3OH]n (1), [(Tp)2Fe(III)2(CN)6Cu(DMF).DMF]n (2), [(Tp)2Fe(III)2(CN)6M(CH3OH)2.2CH3OH]n (M = Co (3) and Ni (4)), have been prepared. In complexes 1 and 2, the Cu(II) ions are pentacoordinated in the form of a slightly distorted square-based pyramid, and they are linked by distorted octahedrons of [(Tp)Fe(CN)3]- to form 1D chains of squares. In complexes 3 and 4, both the central Co(II) and Ni(II) ions have a slightly distorted octahedral coordination geometry, and they are bridged by [(Tp)Fe(CN)3]- to form similar 1D chains of squares. There are weak interchain pi-pi stacking interactions through the pyrazolyl groups of the Tp ligands for complexes 3 and 4. The crystal structures and magnetic studies demonstrate that complexes 1 and 2 exhibit intrachain ferromagnetic coupling and single-chain magnets behavior, and the blocking temperature is ca. 6 K for complex 1 and ca. 3 K for complex 2. Complexes 3 and 4 show significant metamagnetic behavior, where the cyanides mediate the intrachain ferromagnetic coupling between Fe(III) and Co(II) or Ni(II) ions and the interchain pi-pi stacking interactions lead to antiferromagnetic couplings. The field dependence of the magnetization measurements shows that the critical field is around 1 kOe for complex 3 and 0.8 kOe for complex 4 at 1.8 K.  相似文献   

3.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

4.
Gu ZG  Liu W  Yang QF  Zhou XH  Zuo JL  You XZ 《Inorganic chemistry》2007,46(8):3236-3244
Two tricyanometallate precursors, (Bu4N)[(Tp4Bo)Fe(CN)3].H2O.2MeCN (1) and (Bu4N)[(pzTp)Fe(CN)3] (2) [Bu4N+ = tetrabutylammonium cation; Tp4Bo = tris(indazolyl)hydroborate; pzTp = tetrakis(pyrazolyl)borate], with a low-spin FeIII center have been synthesized and characterized. The reactions of 1 or 2 with [Cu(Me3tacn)(H2O)2](ClO4)2 (Me3tacn = N,N',N' '-trimethyl-1,4,7-triazacyclononane) afford two pentanuclear cyano-bridged clusters, [(Tp4Bo)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.5H2O (3) and [(pzTp)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.4H2O (4), respectively. Assembly reactions between 2 and [Ni(phen)(CH3OH)4](ClO4)2 (phen = 1,10-phenanthroline) or Zn(OAc)2.2H2O afford a molecular box [(pzTp)4(phen)4Ni4Fe4(CH3OH)4(CN)12](ClO4)4.4H2O (5) and a rectangular cluster [(pzTp)2Zn2Fe2(OAc)2(H2O)2(CN)6] (6). Their molecular structures were determined by single-crystal X-ray diffraction. In complexes 1 and 2, the central FeIII ions are coordinated by three cyanide carbon atoms and three nitrogen atoms of Tp4Bo- or pzTp-. Both complexes 3 and 4 show a trigonal-bipyramidal geometry, in which [(L)Fe(CN)3]- units occupy the apical positions and are linked through cyanide to [Cu(Me3tacn)]2+ units situated in the equatorial plane. Complex 5 possesses a cubic arrangement of eight metal irons linked through edge-spanning cyanide bridges, while complex 6 shows Zn2Fe2(CN)4 rectangular structure, in which FeIII and ZnII ions are alternately bridged by the cyanide groups. Intramolecular ferromagnetic couplings are observed for complexes 3-5, and they have S = 5/2, 5/2, and 6 ground states and appreciable magnetic anisotropies with negative D values equal to -0.49, -2.39, and -0.39 cm-1, respectively.  相似文献   

5.
Jiang L  Feng XL  Lu TB  Gao S 《Inorganic chemistry》2006,45(13):5018-5026
The preparation and crystal structures of five cyano-bridged Fe-Mn complexes, [(bipy)2Fe(II)(CN)2Mn(II)(bipy)2]2(ClO4)4 (1), [(bipy)2Fe(II)(CN)2Mn(II)(DMF)3(H2O)]2(ClO4)4 (2), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2(H2O)}2 (3), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2}n (4), and Na2[Mn(II)Fe(II)(CN)6] (5) (bipy = 2,2'-bipyridine, Tp = tris(pyrazolyl)hydroborate), are reported here. Compounds 1-4 contain the basic Fe2(CN)4Mn2 square building units, of which 1-3 show the motif of discrete molecular squares of Fe2(CN)4Mn2 and 4 possesses a 1D double-zigzag chain-like structure, while compound 5 is a 3D cubic framework analogous to that of Prussian blue. Compounds 1 and 2 show weak ferromagnetic interactions between two Mn(II) ions through the bent -NC-Fe(II)-CN- bridges. Compound 3 shows weak antiferromagnetic coupling between the Fe(III) and Mn(II) ions, while compound 4 displays a metamagnetic-like behavior with TN = 5.2 K and Hc = 10.5 kOe. Compound 5 exhibits a ferromagnetic ordering with Tc= 3.5 K, coercive field, Hc, = 330 G, and a remnant magnetization of 503 cm3 Oe mol(-1).  相似文献   

6.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

7.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

8.
Heterobimetallic hexanuclear cyano-bridged complexes, [{Fe(Tp)(CN)3}4{M(MeCN)(H2O)2}(2)].10H2O.2MeCN [M = Ni (1), Co (2), Mn (3); Tp = hydrotris(1-pyrazolyl)borate], have been synthesized in H2O-MeCN solution. Complexes 1-3 are isostructural and hexanuclear with [{Fe(Tp)(CN)3}4{M(MeCN)(H2O)2}2] units linked by hydrogen bonds to form a 2D-structure in the solid state. Complex 1 is a canted antiferromagnet that undergoes a field-induced spin-flop-like transition at approximately 1 T and 2 K. At 4.45 K 1 has a transition to paramagnetic state of noninteracting S = 4 magnetic clusters. However, 2 and 3 show antiferromagnetic intracluster coupling. Facile loss of solvent from 2 alters the local symmetry resulting in changing the intracluster interaction from antiferro- to ferromagnetic.  相似文献   

9.
The assembling of [Mn(5-MeOsalen)(H2O)]+ and [(Tp)Fe(CN)3]- affords the one-dimensional zigzag chain [(Tp)Fe(CN)3Mn(5-MeOsalen).2CH3OH]n [1; Tp- = hydrotris(pyrazolyl)borate and 5-MeOsalen2- = N,N'-ethylenebis(5-methoxysalicylideneiminate)]. The corroborated experimental and ab initio data indicate ferromagnetic Fe(III)-Mn(III) couplings and D < 0 anisotropy on Mn(III). The field-induced metamagnetic behavior is due to interchain effects.  相似文献   

10.
The reaction of [M(CN)6]3- (M = Cr3+, Fe3+, Co3+) with the nickel(II) complex of 2,4-diamino-1,3,5-triazin-6-yl-{3-(1,3,5,8,12-pentaazacyclotetradecane)} ([NiL]2+) in excess of ANO3 or ACl (A = Li+, Na+, K+, Rb+, Cs+, NH4+) leads to the cyano-bridged dinuclear assemblies A{[NiL][M(CN)6]}.xH2O (x = 2-5). X-ray structures of Li{[NiL][Cr(CN)6]}.5H2O, NH4{[NiL][Cr(CN)6]}.3.5H2O, K{[NiL][Cr(CN)6]}.4H2O, K{[NiL][Fe(CN)6]}.4H2O, Rb{[NiL][Fe(CN)6]}.3.5H2O, and Cs{[NiL][Fe(CN)6]}.3.5H2O, as well as the powder diffractometry of the entire Fe(III) series, are reported. The magnetic properties of the assemblies are dependent on the monocation A and discussed in detail. New efficient pathways for ferromagnetic exchange between Ni(II) and Fe(III) or Cr(III) are demonstrated. Field dependencies of the magnetization for the Fe(III) samples at low temperature and low magnetic field indicate a weak interchain antiferromagnetic coupling, which is switched to ferromagnetic coupling at increasing magnetic field (metamagnetic behavior). The interchain magnetic coupling can be tuned by the size of the A cations.  相似文献   

11.
A new tricyanoferrate(III) building block and a trinuclear single-molecule magnet derivative are described. The treatment of a 2:1 ratio of [NEt(4)][(Tp*(Bn))Fe(III)(CN)(3)]·H(2)O·MeOH [1; Tp*(Bn) = tris(3,5-dimethyl-4-benzyl)pyrazolylborate] with nickel(II) trifluoromethanesulfonate gives {[(Tp*(Bn))Fe(III)(CN)(3)](2)[Ni(II)(DMF)(4)]}·2DMF (2; DMF = N,N-dimethylformamide). The symmetry-equivalent Fe(III)(LS) ions lead to a favorable alignment of anisotropy tensors (i.e., Fe···B axes) in 2, and an energy barrier of Δ(eff)/k(B) = 16.7 K is found for the S(T) = 2 complex.  相似文献   

12.
Jiang L  Choi HJ  Feng XL  Lu TB  Long JR 《Inorganic chemistry》2007,46(6):2181-2186
Reactions between K[TpFe(CN)3] (Tp- = hydrotris(1-pyrazolyl)borate) and M(ClO4)2 x 6H2O (M = Co or Ni) in a mixture of acetonitrile and methanol afford, upon crystallization via THF vapor diffusion, [Tp8(H2O)12Co6Fe8(CN)24](ClO4)4.12THF x 7H2O (1) and [Tp8(H2O)12Ni6Fe8(CN)24](ClO4)4.12THF x 7H2O (2). Both compounds contain cyano-bridged clusters with a face-centered cubic geometry, wherein octahedral CoII or NiII centers are situated at the face-centering sites. The results of variable-temperature magnetic susceptibility measurements indicate the presence of ferromagnetic exchange coupling within both molecules to give ground states of S = 7 and 10, respectively. Low-temperature magnetization data reveal significant zero-field splitting, with the best fits for the Co6Fe8 and Ni6Fe8 clusters yielding D = -0.54 and 0.21 cm-1, respectively; ac magnetic susceptibility measurements performed on both samples showed no evidence of the slow relaxation effects associated with single-molecule magnet behavior.  相似文献   

13.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

14.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

15.
Two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [(bpca)(2)Fe(III)(2)(CN)(6)Cu(H(2)O)(2).1.5H(2)O](n)() (2) and [(bpca)Fe(III)(CN)(3)Cu(bpca)(H(2)O).H(2)O](n)() (3), and a trinuclear complex, [(bpca)(2)Fe(III)(2)(CN)(6)Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (4), have been synthesized using the tailored tricyanometalate precursor (Bu(4)N)[Fe(bpca)(CN)(3)].H(2)O (1) (Bu(4)N(+) = tetrabutylammonium cation; bpca = bis(2-pyridylcarbonyl)amidate anion) as a building block and structurally characterized. In complex 2, the Cu(II) ions are six-coordinated in an elongated distorted octahedral environment, and they are linked by distorted octahedrons of [Fe(bpca)(CN)(3)](-) to form 1D chain of squares. Complex 3 is an unexpected chiral heterobimetallic helical chain complex, in which the helical chain consists of the asymmetric unit of [(bpca)Fe(CN)(3)Cu(bpca)(H(2)O)]. In complex 4, there are two independent trinuclear clusters in one asymmetric unit, and the coordination modes of the two methanol and two water molecules coordinating to the central Mn(II) ion are different (cis and trans). Complex 2 shows metamagnetic behavior with a Neel temperature of T(N) = 2.2 K and a critical field of 250 Oe at 1.8 K, where the cyanides mediate the intrachain ferromagnetic coupling between the Cu(II) and Fe(III) ions. Complex 3 shows ferromagnetic coupling between Cu(II) and Fe(III) ions, the best-fit for chi(M)T versus T using a 1D alternating chain model leads to the parameters J(1) = 7.9(3) cm(-)(1), J(2) = 1.03(2) cm(-)(1), and g = 2.196(3). Complex 4 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (S(Mn) = 5/2 and S(Fe) = 1/2) which interact antiferromagnetically through bridging cyano groups.  相似文献   

16.
采用[(Tp)Fe(CN)3]-(Tp=hydrotris(pyrazolyl)borate)与[NiL](ClO4)2(L=3,10-bis(2-bydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetra-decane)反应,合成了氰根桥联的异金属三核配合物[NiL][(Tp)Fe(CN)3]2·4H2O(1),并对其结构和磁性进行了研究.该化合物晶体属于正交晶系,Pbca空间群.配合物1中,Ni(Ⅱ)大环与2 [(Tp)re(CN)3]-通过氰根桥联,形成近似直线的三核结构.Ni原子的配位采取六配位稍畸变的八面体构型.其中大环配体上的4个N原子占据赤道平面而桥联氰根的2个N原子占据轴向位置.磁性测定表明在2-300 K的温度范围内,Ni(Ⅱ)和Fe(Ⅲ)之间通过桥联的氰根产生弱的铁磁相互作用.用哈密顿函数H=-2J(SFel·SNi SFe2·SNi)对其XMT-T曲线进行了拟合,得到1的朗德因子g=2.35和交换常数J=8.13 cm-1.最后,对配合物的结构与磁性的关系进行了讨论.  相似文献   

17.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

18.
Reaction of [(Me3tacn)Cu(H2O)2]2+ (Me3tacn = N,N',N' '-trimethyl-1,4,7-triazacyclononane) with [TpFe(CN)3]- (Tp- = hydrotris(pyrazolyl)borate) in a mixture of ethanol and acetonitrile affords the pentanuclear cluster [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+. Single-crystal X-ray analysis reveals a trigonal bipyramidal structure featuring a D3h-symmetry core in which two opposing FeIII (S = 1/2) centers are linked through cyanide bridges to an equatorial triangle of three CuII (S = 1/2) centers. Fits to variable-temperature dc magnetic susceptibility data are consistent with ferromagnetic coupling to give an S = 5/2 ground state, while fits to low-temperature magnetization data indicate the presence of a large axial zero-field splitting (D = -5.7 cm-1). Frequency dependence observed in the ac magnetic susceptibility data confirms single-molecule magnet behavior, with an effective spin reversal barrier of Ueff = 16 cm-1. When compared with the much lower anisotropy barrier previously observed for the face-centered cubic cluster [Tp8(H2O)6Cu6Fe8(CN)6]4+, the results demonstrate the enormous influence of the geometry in which a given set of metal ions are arranged.  相似文献   

19.
The synthesis and magnetic properties of the oxalate-based molecular soluble magnets with general formula [K(18-crown-6)] 3[M (II) 3(H 2O) 4{M (III)(ox) 3} 3] (M (III) = Cr, Fe; M (II) = Mn, Fe, Ni, Co, Cu; ox = C 2O 4 (2-)) are here described. All the reported compounds are isostructural and built up by 2D bimetallic networks formed by alternating M (III) and M (II) ions connected through oxalate anions. Whereas the Cr (III)M (II) derivatives behave as ferromagnets with critical temperatures up to 8 K, the Fe (III)M (II) present ferri- or weak ferromagnetic ordering up to 26 K.  相似文献   

20.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号