首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The details of a new approach for absolute calibration of microphones, based on the direct measurement of acoustic particle velocity using laser Doppler velocimetry (LDV), are presented and discussed. The calibration technique is carried out inside a tube in which plane waves propagate and closed by a rigid termination. The method developed proposes to estimate the acoustic pressure with two velocity measurements and a physical model. Minimum theoretical uncertainties on the estimated pressure and minimum measurable pressure are calculated from the Cramer Rao bounds on the estimated acoustic velocity amplitude and phase. These uncertainties and the minimum measurable pressure help to optimize the experimental set up. Acoustic pressure estimations performed with LDV are compared with acoustic pressures obtained with a reference microphone. Measurements lead to a minimum bias of 0.006 dB and a minimum uncertainty of 0.013 dB on the acoustic pressure estimation for frequencies 1360 Hz and 680 Hz.  相似文献   

2.
Measurements of acoustic-to-seismic coupling ratio, i.e. the ratio of the pressure exerted by an acoustic wave at a point on the surface to the acoustic particle velocity generated at the surface at that point, may be used to determine both elastic and structural properties of poroelastic materials. The sound pressure is measured using a microphone and, usually, the velocities are measured using geophones. Problems with geophone sensors have been shown to include both mass loading of the soil and coupling resonances within the frequency range of interest. The latter can lead to inaccurate amplitude and phase measurements. In an attempt to overcome these problems, the use of a Laser-Doppler vibrometer (LDV) has been investigated. Previous work with compacted plane soil surfaces has been extended to loosely consolidated soils. Good agreement has been found between geophone and LDV measurements of vertical particle velocity for a continuous wave sound source. Problems with poor LDV signal-to-noise ratio in unconsolidated materials have been overcome using local ground treatment. Subsequent modelling shows reasonable agreement between the data and the predicted values of material properties.  相似文献   

3.
Propagation of power ultrasound (from 20 to 800 kHz) through a liquid inside a cylindrical reactor initiates acoustic cavitation and also fluid dynamics phenomena such as free surface deformation, convection, acoustic streaming, etc. Mathematical modelling is performed as a new approach to predict where active bubbles are and how intense cavitation is. A calculation based on fluid dynamics equations is undertaken using computational fluid dynamics code; this is of great interest because such code provides not only the pressure field but also velocity and temperature fields. The link between the acoustic pressure and the cavitation field is clearly established. Moreover, the pressure profile near a free surface allows one to predict the shape of the acoustic fountain. The influence of the acoustic fountain on the wave propagation is shown to be important. The convective flow inside a reactor is numerically obtained and agrees well with particle image velocity measurements. Non-linearities arising from the dissipation of the acoustic wave are computed and lead to the calculation of the acoustic streaming. The superimposed velocity field (convective flow and acoustic streaming) succeeds in simulating the bubble behaviour at 500 kHz, for instance.  相似文献   

4.
利用矢量海洋环境噪声提取声场格林函数   总被引:3,自引:0,他引:3       下载免费PDF全文
考虑到矢量水听器在垂直方向上具有8字形指向性,能够有效抑制远方非平稳噪声源的干扰,提出了一种矢量环境噪声相关函数(NCF)提取声场时域格林函数(TDGF)的方法。基于简正波理论建立了声压和垂直振速垂直相关性模型。在此基础上,给出了声压和垂直振速相关函数提取声场纵向格林函数的过程.数值仿真对比和实验数据分析表明,相对于声压提取方法,垂直振速提取方法能够有效消除直达波前出现的亮纹与亮区干扰。此外,对于同等时间长度噪声序列,声压提取方法只提取到直达波路径,而垂直振速提取方法还提取到了我们更为关心的海底反射路径。利用直达波与海底反射波到达时延差估计的海深与实测海深吻合较好。   相似文献   

5.
A new time domain formulation of the acoustic wave is developed to avoid approximating assumptions of the linearized scalar wave equation that limit its validity to low Mach particle velocity modeling or to a smooth potential field in a stationary medium. The proposed model offers precision of the moving frame while retaining the form of the widely used linearized scalar wave equation although with respect to modified coordinates. It is applicable to field calculations involving transient waves with unlimited particle velocity, propagating in inhomogenous fluids or in those with time varying density. The model is based on the exact flux continuity equation and the equation of motion, both using the moving reference frame. The resulting closed-form free space scalar wave equation employing total derivatives is converted back to the partial differential form by using modified independent variables. The modified variables are related to the common coordinates of space and time following integral expressions involving transient particle velocity representing wave radiated by each point of a stationary source. Consequently, transient field produced by complex surface velocity sources can be calculated following existing surface integrals of the radiation theory although using modified coordinates. The use of the proposed model is presented in a numerical simulation of a transient velocity source vibrating at selected magnitudes, leading to the determination of the propagating pressure and velocity wave at any point.  相似文献   

6.
Near-field acoustic holography is a measuring process for locating and characterizing stationary sound sources from measurements made by a microphone array in the near-field of the acoustic source plane. A technique called real-time near-field acoustic holography (RT-NAH) has been introduced to extend this method in the case of nonstationary sources. This technique is based on a formulation which describes the propagation of time-dependent sound pressure signals on a forward plane using a convolution product with an impulse response in the time-wavenumber domain. Thus the backward propagation of the pressure field is obtained by deconvolution. Taking the evanescent waves into account in RT-NAH improves the spatial resolution of the solution but makes the deconvolution problem "ill-posed" and often yields inappropriate solutions. The purpose of this paper is to focus on solving this deconvolution problem. Two deconvolution methods are compared: one uses a singular value decomposition and a standard Tikhonov regularization and the other one is based on optimum Wiener filtering. A simulation involving monopoles driven by nonstationary signals demonstrates, by means of objective indicators, the accuracy of the time-dependent reconstructed sound field. The results highlight the advantage of using regularization and particularly in the presence of measurement noise.  相似文献   

7.
一种利用激波进行落点测量的新方法   总被引:2,自引:0,他引:2       下载免费PDF全文
杨世海  万建伟  周良柱 《应用声学》1999,18(3):11-13,32
目前用于确定弹刃或导弹落点的声测方法多数是基于这样一个假定:其所发出的声波是一个平面波。但当其下落速度大于声速时,这个假定就不成立了,这时产生了一个锥面激波^(4),本文介绍了一种利用正方形基阵对其进行测量的方法。  相似文献   

8.
This paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc. The reconstructed vibro-acoustic quantities are validated rigorously via experiments by comparing the reconstructed normal surface velocity spectra and distributions with the benchmark data obtained by scanning a laser vibrometer over the plate surface. Results confirm that following the proposed guidelines and strategies can ensure the accuracy in reconstructing the normal surface velocity up to the target structural wavelength, and produce much more satisfactory results than a straight application of the original HELS formulations. Experiment validations on a baffled, square plate were conducted inside a fully anechoic chamber.  相似文献   

9.
This paper revisits a nearfield microphone array technique termed nearfield equivalent source imaging (NESI) proposed previously. In particular, various issues concerning the implementation of the NESI algorithm are examined. The NESI can be implemented in both the time domain and the frequency domain. Acoustical variables including sound pressure, particle velocity, active intensity and sound power are calculated by using multichannel inverse filters. Issues concerning sensor deployment are also investigated for the nearfield array. The uniform array outperformed a random array previously optimized for far-field imaging, which contradicts the conventional wisdom in far-field arrays. For applications in which only a patch array with scarce sensors is available, a virtual microphone approach is employed to ameliorate edge effects using extrapolation and to improve imaging resolution using interpolation. To enhance the processing efficiency of the time-domain NESI, an eigensystem realization algorithm (ERA) is developed. Several filtering methods are compared in terms of computational complexity. Significant saving on computations can be achieved using ERA and the frequency-domain NESI, as compared to the traditional method. The NESI technique was also experimentally validated using practical sources including a 125 cc scooter and a wooden box model with a loudspeaker fitted inside. The NESI technique proved effective in identifying broadband and non-stationary sources produced by the sources.  相似文献   

10.
The drift motion of a 180° domain boundary in garnet ferrites with two nonequivalent sublattices is studied in an elastic stress field induced by an acoustic wave propagating in the domain boundary plane. The dependences of the drift velocity on the amplitude and polarization of the acoustic wave are obtained, and the drift motion conditions for a strip domain structure are determined.  相似文献   

11.
沈惠杰  温激鸿  郁殿龙  蔡力  温熙森 《物理学报》2012,61(13):134303-134303
基于多层复合材料结构的二维声隐身斗篷设计思想, 利用主动隔膜声学空腔有效密度可以任意控制这一特性, 设计了主动声学超材料下的无限长圆柱声隐身斗篷. 给出了主动隔膜声学空腔单元的声电元件类比模拟电路图和具体的有效密度控制方法. 进行了主动声学超材料声隐身斗篷的结构建模, 并对平面入射波入射下此圆柱隐身斗篷周围声压分布场进行仿真计算. 结果表明, 平面波在一定频率范围内可以毫无阻碍地透过圆柱斗篷, 似乎不存在这种障碍物, 达到声隐身效果. 同时, 计算了主动声材料斗篷下总散射截面随频率变化曲线, 研究了此斗篷隐身效果随频率的变化特性. 本文从主动控制角度探讨实验实现隐身斗篷的技术问题, 有望给声隐身斗篷实验设计提供一条新的技术途径.  相似文献   

12.
A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ~2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±~3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.  相似文献   

13.
Near-field acoustic holography (NAH) is an effective tool for visualizing acoustic sources from pressure measurements made in the near-field of sources using a microphone array. The method involving the Fourier transform and some processing in the frequency-wavenumber domain is suitable for the study of stationary acoustic sources, providing an image of the spatial acoustic field for one frequency. When the behavior of acoustic sources fluctuates in time, NAH may not be used. Unlike time domain holography or transient method, the method proposed in the paper needs no transformation in the frequency domain or any assumption about local stationary properties. It is based on a time formulation of forward sound prediction or backward sound radiation in the time-wavenumber domain. The propagation is described by an analytic impulse response used to define a digital filter. The implementation of one filter in forward propagation and its inverse to recover the acoustic field on the source plane implies by simulations that real-time NAH is viable. Since a numerical filter is used rather than a Fourier transform of the time-signal, the emission on a point of the source may be rebuilt continuously and used for other post-processing applications.  相似文献   

14.
This study numerically analyzes submerged cylindrical shells using a coupled boundary element method (BEM) with finite element method (FEM) in conjunction with the wave number theory, in which the spatial Fourier transform of surface velocity for cylinders is directly related to pressure in a far field. The acoustic loading is formulated using a symmetric complex matrix derived from a boundary integral equation where the symmetry is based on an acoustic reciprocal principle for surface acoustics. In this formulation the acoustic loading matrix is a large acoustic element whose degree of freedom is connected to the normal displacement of the vibrating structures. The coupled BEM/FEM equation is a banded, symmetric matrix, and thus its bandwidth can be minimized using a proper algorithm. This formulation significantly increases numerical efficiency. The computed normal velocity is thus transformed to wave number representation to examine acoustic radiation. A finite plane cylindrical shell, without attached stiffeners, and a shell with internal ring stiffeners are chosen to demonstrate the present analysis procedure. The far field pressure computed directly from the integral equation and predicted by wave number theory correlates closely with increasing vibrating frequency. Meanwhile, the influences of the internal ring structures on acoustic radiation are examined using the wave number theory, which helps in understanding how internal structures influence radiated noise.  相似文献   

15.
Thermoacoustic refrigerators have been developed during the last 15 years, employing quasi-standing resonant acoustic waves inside fluid-filled cavities to transfer heat along a stack region. Because higher efficiency can be reached when a significant travelling wave component exists in the resonator, specific resonant thermoacoustic devices have been designed allowing to adjust more or less the ratio of travelling and standing wave components. However, the acoustic pressure field and the particle velocity field do not appear to be the optimal ones, for the thermal quantities of interest. Thus, it is the aim of the paper to present a new kind of thermoacoustic standing wave-like device which allows to control easily and independently the pressure field and the particle velocity field, after investigating the optimal acoustic field, in the stack region, for the main parameters of interest, i.e. the temperature gradient, the thermoacoustic heat flow and the coefficient of performance.  相似文献   

16.
针对传声器阵列两侧存在相干声源的非自由声场重建问题,提出基于球面谐波函数扩展近场声全息理论的相干声场重建方法。该方法在已知测量面两侧声源几何位置时,使用单层传声器阵列获取测量面处的声压分布,通过最小二乘法获得与目标声源和干扰噪声源响应对应的最优球波函数扩展项数和最优系数向量,结合测点位置的空间坐标进行声波分解,并分别重建出各声源在测量面上的声压分布。为了验证方法的有效性,分别给出了相干噪声源为球形声源和非球形声源的仿真验证,并在全消声室内对双扬声器产生的相干声场的重建进行了实验验证。结果表明:该方法对球形声源和非球形声源干扰下的声场重建都具有较好的效果,球形声源干扰下的重建精度更高。   相似文献   

17.
针对声学有限元分析中四节点等参单元计算精度低,对网格质量敏感的问题,将光滑有限元法引入到多流体域耦合声场的数值分析中,提出了二维多流体域耦合声场的光滑有限元解法。该方法在Helmholtz控制方程与多流体域耦合界面的声压/质点法向速度连续条件的基础上,得到二维多流体耦合声场的离散控制方程,并采用光滑有限元的分区光滑技术将声学梯度矩阵形函数导数的域内积分转换形函数的域边界积分,避免了雅克比矩阵的计算。以管道二维多流体域耦合内声场为数值分析算例,研究结果表明,与标准有限元相比,对单元尺寸较大或扭曲严重的四边形网格模型,光滑有限元的计算精度更高。因此光滑有限元能很好地应用于大尺寸单元或扭曲严重的网格模型下二维多流体域耦合声场的预测,具有良好的工程应用前景。   相似文献   

18.
Statistically optimized near field acoustic holography (SONAH) differs from conventional near field acoustic holography (NAH) by avoiding spatial Fourier transforms; the processing is done directly in the spatial domain. The main advantage of SONAH compared with NAH is that the usual requirement of a measurement aperture that extends well beyond the source can be relaxed. Both NAH and SONAH are based on the assumption that all sources are on one side of the measurement plane whereas the other side is source free. An extension of the SONAH procedure based on measurement with a double layer array of pressure microphones has been suggested. The double layer technique makes it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise coming from the "wrong" side. It has also recently been demonstrated that there are significant advantages in NAH based on an array of acoustic particle velocity transducers (in a single layer) compared with NAH based on an array of pressure microphones. This investigation combines the two ideas and examines SONAH based on an array of pressure-velocity intensity probes through computer simulations as well as experimentally.  相似文献   

19.
One design for three-dimensional multimicrophone probes is the four-microphone orthogonal design consisting of one microphone at an origin position with the other three microphones equally spaced along the three coordinate axes. Several distinct processing methods have been suggested for the estimation of active acoustic intensity with the orthogonal probe; however, the relative merits of each method have not been thoroughly studied. This comparative study is an investigation of the errors associated with each method. Considered are orthogonal probes consisting of matched point sensor microphones both freely suspended and embedded on the surface of a rigid sphere. Results are given for propagating plane-wave fields for all angles of incidence. It is shown that the lowest error for intensity magnitude results from having the microphones in a sphere and using just one microphone for the pressure estimate. For intensity direction, the lowest error results from having the microphones in a sphere and using Taylor approximations to estimate the particle velocity and pressure.  相似文献   

20.
The aim of this paper, is to present an innovative experimental approach to assess images of the acoustic particle velocity field using a laser vibrometer scanning an ultra-light membrane. Firstly, a theoretical part is devoted to the infinite membrane governing equations, and to its response to an acoustic incident plane wave. An impedance of the membrane is defined, and a mass correction factor is obtained for a plane wave in normal incidence, allowing to assess the particle velocity of the acoustic field without membrane from the measured velocity of the membrane. The practical realization of a finite membrane is reported in a second section, showing difficulties linked to membrane modes generated by an uncontrolled residual tension, also showing how those difficulties are overcome by weighing down the membrane and by applying the mass correction. Third and fourth parts of the article are dedicated to two-dimension applications, illustrating the implementation of the membrane approach in the case of a plate excited by a shaker, and in the case of a loudspeaker driven with a white noise. Results are encouraging, showing that a “heavy” membrane should be used in low frequency to avoid difficulties due to membrane modes, and a light one in high frequency to minimize the mass effect (that can be corrected only for plane wave in normal incidence) and to avoid potential interactions between the membrane and the air gap between the membrane and the source, when the membrane is placed in the near field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号