首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Measurements of the radial electric field profile in magnetically confined plasmas have yielded important new insights in the physics of L-H transitions, edge biasing and/or the active control of Internal and Edge Transport Barriers. The radial electric field is not an easy plasma parameter to diagnose. Techniques to measure the radial electric field in the plasma core are the Heavy Ion Beam Probe and the Motional Stark Effect. An indirect method that is quite often applied is to derive the electric field from measurements of the poloidal and toroidal rotation velocities via the radial ion force balance. This paper will first briefly explain the need for detailed measurements of the radial electric field profile. Subsequently, the various diagnostics to measure this parameter will be reviewed. The emphasis will be especially put on recent trends, rather than on an exhaustive overview. Presented at 5th Workshop “Role of Electric Fields in Plasma Confinement and Exhaust”, Montreux, Switzerland, June 23–24, 2002. Partner in the Trilateral Euregio Cluster  相似文献   

2.
Experiments at the FT-2 tokamak had demonstrated effective plasma LH heating, which was accounted for by both direct absorption of RF power and plasma transport suppression. The improved core confinement accompanied by Internal Transport Barrier (ITB) formation was observed. The RF pulse switch off is followed by triggering of LH transition and the External Transport Barrier (ETB) formation near the last closed flux surface. The present paper is devoted to a much more detailed study of the radial electric fieldE r behaviour in the region of ITB and ETB and its influence on the tokamak microturbulence in these regions. The new experimental data were obtained by spatial spectroscopic technique using additional pulse helium puffing in hydrogen plasma. Simultaneously microscale plasma oscillations in the frequency band (0.01–2) MHz are observed with local enhanced microwave scattering diagnostics and by x-mode fluctuation reflectometry. Experiments demonstrate that the improved confinement is associated with the modification of microturbulence by the shear of theE×B poloidal velocity. This conclusion is also confirmed by the data obtained by Langmuir probes in the edge plasma. Presented at 5th Workshop “Role of Electric Fields in Plasma Confinement and Exhaust”, Montreux, Switzerland, June 23–24, 2002”. The study was performed with the support of the Ministry of General and Professional Education of RF (TOO-7.4-2797), INTAS-01-2056 and the RFBR Grants 00-02-16927, 01-02-17926 and 02-02-17684.  相似文献   

3.
The original experimental device for studying the radial dependences of emitted radiation, generated by the cylindrically symmetric positive column of the DC glow discharge, is proposed. Principle of detection of the radial intensity profiles of the spectral lines by means of the special scanner with two movable conic mirrors is described. The function of the scanner was verified experimentally and by the method of raytracing. As an example, the radial profiles of lines emitted by the positive column of the neon glow discharge are presented. No significant changes were found. This work is a part of the research plan MSM 0021620834, that is financed by the Ministry of Education of the Czech Republic.  相似文献   

4.
An improved Abel inversion method based on Legendre polynomials approximations is presented for reconstructing the original radial distribution of plasma emission coefficients from projected intensities. The method uses the technique of overlapping two near segments for obtaining an excellent approximation of the intensity distribution. The approximated function of the intensity profile is a combination of various shifted Legendre polynomials which in the Abel inverse equation can be integrated exactly to deduce the emission coefficient. It is shown, using simulated intensity data with and without noise inverted for a comparison with those obtained by other methods, that the method is more accurate and has a better property of noise resistance. It is well suited for applying to experimental intensities distorted by noise.  相似文献   

5.
Two high performance silicon drift detectors (SDD) are installed at the equatorial port with z = 0 and z = -16.4 cm on HL-2A tokamak, respectively. These SDDs combine with the new and non-conventional software pulse height analyser (SPHA ) successfully developed more recently by us to measure the time evolution of soft x-rays spectra, the thermal and superthermal electron temperatures. The high-quality three-dimensional figure of time evolution for soft x-rays energy spectra is easily obtained by combination of a new SPHA and computer. Therefore, the measurement accuracies and the time resolutions of thermal and superthermal electron temperatures are also improved. The enhancement phenomenon of superthermal electron during electron cyclotron resonance heating (ECRH) can be explained by the combination of superthermal electron avalanche theory and experimental parameters.  相似文献   

6.
A new method is presented for reconstruction of the radially distributed emissivity from the line-of-sight projected intensity. The method is based on approximating the projected intensity profile by Legendre wavelets. The coefficients of the approximation are computed using the inner product of Legendre wavelets and the intensity profile. The emissivity profile is then obtained by the combination of the functions related to Legendre wavelets. The method is more accurate and noise resistant than other methods when applied to experimental data, and there is no need for a complete noise filtering of the intensity data before applying the inversion.  相似文献   

7.
T.P. Ma  L.Q. Hu 《Physics letters. A》2008,372(40):6187-6192
Zernicke polynomials method was first used in HT-7 tomography. Combining the characteristics of the soft X-ray imaging system in HT-7 tokamak, some of the technical consideration in applicating the tomography method are reported in this Letter. Through analyzing experimental soft X-ray data of a typical discharge with m=1 mode superimposed on sawtooth, it is shown that in the mid-mode and precursor phases, the central magnetic surface structure is composed of a hot core and a small magnetic island. In the crash phase, the hot core is obviously pushed outside and evolves into a crescent. The magnetic island is large. In addition, we compared the reconstructions obtained with Zernicke polynomials method and the Fourier-Bessel expansion method. The comparison result shows that as the magnetic island is large, Zernicke polynomials method seems more suitable to reconstruct the central plasma emissivity distribution on HT-7 tokamak. At last, through analyzing the oscillation amplitude and island size of the m=1 mode superimposed on sawtooth, it is thought that the large oscillation amplitude is due to large pressure gradient at the vicinity of inversion surface.  相似文献   

8.
In many laser applications such as drilling, welding and cutting, the role of the plasma in the transfer of energy between the laser beam and the metal surface appears to be rather important. It depends on several parameters such as laser wavelength, irradiation time and deposited energy but especially on the buffer gas nature. In this work the plasma is initiated by a TEA-CO2 laser beam perpendicularly focussed onto a Ti target (100 MW/cm2), in a cell containing He, Ar or a He-Ar mixture as buffer gas. The plasma is studied by time and space resolved spectroscopic diagnostics. The results show that helium allows target erosion whereas a highly absorbing breakdown plasma develops in argon shielding the target from the subsequent laser heating. With only 20% Ar in He, a strong quenching of the He plasma by Ar occurs, and the Ar plasma effect is dominant.  相似文献   

9.
Arc root motions in generating dc argon hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the are root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.  相似文献   

10.
A study of visible laser ablation of silicon, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation, at an intensity of the order of 1010 W/cm2, produces high non-isotropic emission of neutrals and ionic species. Mass quadrupole spectrometry, coupled to electrostatic ion deflection, allows estimation of the energy distributions of the emitted species from plasma. Neutrals show typical Boltzmann-like distributions while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Time-of-flight measurements were also performed by using an ion collector consisting of a collimated Faraday cup placed along the normal to the target surface. Surface profiles of the craters, created by the laser radiation absorption, permitted to study the ablation threshold and ablation yields of silicon in vacuum. The plasma fractional ionization, temperature and density were evaluated by the experimental data. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at the non-equilibrium plasma conditions. The angular distribution of the neutral and ion species is discussed.  相似文献   

11.
Electron mean energy and the effects of gas mixture are studied theoretically and experimentally. The electron mean energy in O2 and its mixtures is obtained by solving Boltzmann's equation. The experiments of the Langmuir probe system and spectral analysis are carried out. It is shown that electron temperature goes down with the increasing pressure, narrowing pulse width and the addition of helium and argon. According to the intensity of oxygen atom at 777.19 nm, xenon is more effective in inhibition of O2 decomposition than helium and argon.  相似文献   

12.
Nine different neon-like ions with atomic numbers ranging from 28 to 42 have exhibited gain in various 3p—3s transitions. The temperature of the lasing plasma is critical in determining the state of ionization and the relative importance of collisional excitation and recombination pumping. In this paper we demonstrate a potentially useful new temperature diagnostic for these plasmas that works in the density range of interest for X-ray lasing: the absolute intensity of 3p—3s sodium-like lines. Due to their large collisional couplings and high optical depths, their brightness temperature approaches the actual kinetic temperature of the plasma in temperature and density regimes of importance for achieving optimal X-ray laser performance.  相似文献   

13.
In the paper an optogalvanic experiment is described. A tunable dye laser irradiates discharge plasma in neon and the change of the plasma density is measured by microwave technique. The paper describes also the theoretical method which gives the change of the plasma impedance in relation to the measured signal. Finally the measuring method, the theoretical predictions for optimizing the method and the proposed approximations were experimentally checked.  相似文献   

14.
Two different methods for plasma-density measurement using blow-off neutral source were performed on the MT-1 tokamak. The two methods produce nearly the same results, but the pure blow-off method is the less precise. The blow-off combined with laser-induced fluorescence requires a complicated experimental arrangement and a simple evaluation, while the pure blow-off method demands a simpler experimental set-up and a complicated evaluation.  相似文献   

15.
X. Gao  the EAST team 《Physics letters. A》2008,372(13):2286-2290
The first plasma was obtained in the EAST on September 26th, 2006. Single-null (SN) and double-null (DN) diverted plasmas were achieved successfully in the EAST tokamak on January 22nd, 2007. The employed plasma diagnostics for first plasma study of EAST are as follows: a vertical one-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer for measuring the line average density, a 10-channel soft X-ray array for intensity measurement, a 16-channel heterodyne Electron Cyclotron Emission (ECE) for measuring the electron temperature profile, a 8-channel XUV bolometer array to measure plasma radiation losses, a 3-channel hard X-ray array for intensity measurement, an electromagnetic measurement system, a 35-channel Hα radiation array, 20 probes for divertor plasma, a one-channel visible bremsstrahlung emission, an impurity optical spectrum measurement system and two optical spectroscopic multi-channel analyzers (OMA). The first experimental results of diagnostic systems are summarized in this Letter.  相似文献   

16.
The r.f. discharge of sputtering silicon target using argon-oxygen-nitrogen plasma was investigated by optical emission spectroscopy. Electronic temperature (Te) and emission line intensity were measured for different plasma parameters: pressure (from 0.3 to 0.7 Pa), power density (0.6-5.7 W cm−2) and gas composition. At high oxygen concentration in the plasma, both Te and the target self-bias voltage (Vb) steeply decrease. Such behaviour traduces the target poisoning phenomenon. In order to control the deposition process, emission line intensity of different species present in the plasma were compared to the ArI (λ = 696.54 nm) line intensity and then correlated to the film composition analysed by Rutherford Backscattering Spectroscopy.  相似文献   

17.
We present the characterization of an apparatus generating XUV radiation by a high peak value (20–40) kA and short rise time (≈ 20 ns) current pulse in a capillary discharge channel (up to 20 cm in length) filled by argon gas. The apparatus has been developed with the purpose of production of an intensive spontaneous emission in the spectral region of (2–50) nm and study of the z-pinch conditions for obtaining the laser generation in the Nelike Ar at 46.9 nm. The current pulses are generated by the direct discharge of a 7 nF water dielectric capacitor resonantly charged up to 400 kV by a six-stages Marx generator. The XUV radiation emitted during the radial compression of the plasma column is measured using calibrated PIN diodes, filters and multilayer mirrors in order to test the z-pinch plasma collapse and to measure the conversion efficiency of the electrical energy into the XUV radiation. This work is supported by the Italian National Institute of Nuclear Physics and in part by the Italian National Institute of Matter Physics.  相似文献   

18.
In the last years the ATOMKI-ECRIS group started a local plasma diagnostics research project, to adapt the probe to the ECR plasma conditions. Until now we made progress in the study of the cold plasma region. The results has been reported in e.g. [L. Kenéz, S. Biri, J. Karácsony, A. Valek, Nucl. Instrum. Methods Phys. Res. B 187 (2) (2002) 249; L. Kenéz, S. Biri, J. Karácsony, A. Valek, T. Nakagawa, K.E. Stiebing, V. Mironov, Rev. Sci. Instrum. 73 (2) (2002) 617]. In this Letter we make a step further report the first experiments carried out in the hot ECR plasma. We used a simple probe inserted in the hot resonant plasma. We point out that this probe works as emitting probe. We developed a theoretical model to explain the unusual shaped voltage-current characteristics and tested its validity using computational study of the presented theory.  相似文献   

19.
Time- and spatially-resolved optical emission spectroscopy was performed to characterize the plasma produced in a hybrid magnetron-sputtering-laser deposition system, which is used for TiC or SiC thin films preparation. A graphite target was ablated by a KrF excimer laser (λ=248 nm,τ=20 ns) and either Ti or Si targets were used for DC magnetron sputtering in argon ambient. Spectra were measured in the range 250–850 nm. The evolution of the spectra with varying magnetron powers (0–100 W) and argon pressures (0.3–10 Pa) was studied. Spectra of the plasmas produced by a) the magnetron alone, b) the ablation laser alone, and c) the magnetron and the ablation laser together, were recorded. Spectra (a) were dominated by Ar atoms and Ar+ ions. Emission lines of Ti and Si were detected, when Ti target and Si target was used, respectively. Spectra (b) revealed emission of C, C+, C2, Ar, Ar+. Spectra (c) showed presence of all previously mentioned species and further of Ti+ ions emission was detected. The research was supported by Grant Agency of the Czech Republic No. 202/06/02161, GA ASCR project number A1010110/01 and Institutional Research Plan AV CR No. AV0Z 10100522.  相似文献   

20.
The plasma potential and its distribution play an important role in the highly-charged ion production and it is an important parameter of the electron cyclotron resonance (ECR) plasma. Emitting probes have been successfully used to determine plasma potential distributions in many plasma machines. In the framework of the ATOMKI-ECRIS plasma diagnostics research project, plasma-induced emitting probe was developed. It was proved that in certain conditions such probes could be reliably used without being damaged and without disturbing the plasma. Important observations were made related to the biased-disc effect. In favor of establishing the method of emitting probe usage in ECR plasma, dedicated experiments were performed at the NIRS-Kei2 all permanent compact ECR ion source. Based on the experiences gained after the NIRS experiments, the ATOMKI plasma-induced probe measurements could be interpreted. It was shown that biasing the Disc electrode negatively with respect to the source potential, the plasma potential measured on the resonant zone decreased, while the well-known ion beam current increase was obtained. This result proves the previous assumption [K.E. Stiebing, O. Hohn, S. Runkel, L. Schmidt, H. Schmidt-Böcking, V. Mironov, G. Shirkov, Phys. Rev. ST Accel. Beams 2 (1999) 123501], that the biased-disc changes the plasma potential distribution creating favorable conditions for ion beam extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号