首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinel LiNi0.5Mn1.5O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials have been successfully synthesized by the sol–gel method using citric acid as a chelating agent. The structure and electrochemical performance of these as-prepared powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the galvanostatic charge–discharge test in detail. XRD results show that there is a small Li y Ni1-y O impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5Mn1.5O4, and LiMn1.4Cr0.2Ni0.4O4 has high phase purity, and the powders are well crystallized. SEM indicates that LiMn1.4Cr0.2Ni0.4O4 has a slightly smaller particle size and a more regular morphological structure with narrow size distribution than those of LiNi0.5Mn1.5O4. Galvanostatic charge–discharge testing indicates that the initial discharge capacities of LiMn1.4Cr0.2Ni0.4O4 and LiNi0.5Mn1.5O4 cycled at 0.15 C are 129.6 and 130.2 mAh g−1, respectively, and the capacity losses compared to the initial value, after 50 cycles, are 2.09% and 5.68%, respectively. LiMn1.4Cr0.2Ni0.4O4 cathode has a higher electrode coulombic efficiency than that of the LiNi0.5Mn1.5O4 cathode, implying that Ni and Cr dual substitution is beneficial to the reversible intercalation and de-intercalation of Li+.  相似文献   

2.
We have synthesized spinel type cobalt‐doped LiMn2O4 (LiMn2?yCoyO4, 0≤y≤0.367), a cathode material for a lithium‐ion battery, with hierarchical sponge structures via the cobalt‐doped MnCO3 (Mn1‐xCoxCO3, 0≤x≤0.204) formed in an agar gel matrix. Biomimetic crystal growth in the gel matrix facilitates the generation of both an homogeneous solid solution and the hierarchical structures under ambient condition. The controlled composition and the hierarchical structure of the cobalt‐doped MnCO3 precursor played an important role in the formation of the cobalt‐doped LiMn2O4. The charge–discharge reversible stability of the resultant LiMn1.947Co0.053O4 was improved to ca. 12 % loss of the discharge capacity after 100 cycles, while pure LiMn2O4 showed 24 % loss of the discharge capacity after 100 cycles. The parallel control of the hierarchical structure and the composition in the precursor material through a biomimetic approach, promises the development of functional materials under mild conditions.  相似文献   

3.
The formation enthalpies from binary oxides of LiMn2O4, LiMn2?xCrxO4 (x=0.25, 0.5, 0.75 and 1), LiMn2?xFexO4 (x=0.25 and 0.5), LiMn2?xCoxO4 (x=0.25, 0.5, and 0.75) and LiMn1.75Ni0.25O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close‐to‐zero heat of mixing in LiMn2O4—LiMnMO4 solid solutions. These data confirm that transition‐metal doping is beneficial for stabilizing these potential cathode materials for lithium‐ion batteries.  相似文献   

4.
以醋酸锰、氢氧化锂和三氧化二铟为原料,以柠檬酸为配位剂,采用溶胶-凝胶法制备了掺杂In的尖晶石LiMn2-xInxO4(x=0,0.01,0.02,0.05),采用XRD、SEM对目标材料进行了结构和形貌表征,采用恒流充放电、循环伏安(CV)以及交流阻抗(EIS)谱测试对材料进行了电化学性能表征,考察了不同In掺杂量对材料性能的影响。结果表明,当In掺杂量为1%时,LiMn1.99In0.01O4样品具有纯的尖晶石锰酸锂结构,在0.5C和3.4~4.35 V电压范围条件下,LiMn1.99In0.01O4的初始放电容量为119.9 mAh.g-1,经过1C 30次,2C 30次,再0.5C 5次循环后,其放电容量保持率为84.9%,显示了良好的电化学性能。掺杂1%的In的样品比未掺杂的样品具有更优的高温循环稳定性能。  相似文献   

5.
Strategies for countering the solubility of LiMn2O4 (spinel) electrodes at 50 °C and for suppressing the reactivity of layered LiMO2 (M=Co, Ni, Mn, Li) electrodes at high potentials are discussed. Surface treatment of LiMn2O4 with colloidal zirconia (ZrO2) dramatically improves the cycling stability of the spinel electrode at 50 °C in Li/LiMn2O4 cells. ZrO2-coated LiMn0.5Ni0.5O2 electrodes provide a superior capacity and cycling stability to uncoated electrodes when charged to a high potential (4.6 V vs Li0). The use of Li2ZrO3, which is structurally more compatible with spinel and layered electrodes than ZrO2 and which can act as a Li+-ion conductor, has been evaluated in composite 0.03Li2ZrO3 · 0.97LiMn0.5Ni0.5O2 electrodes; glassy LixZrO2 + x/2 (0<x⩽2) products can be produced from colloidal ZrO2 for surface coatings.  相似文献   

6.
Summary Hydrated microcrystalline compound, V1-xCrxOy·nH2O, where x<0.063 and 4.4<n<8 and hydrated amorphous phases, CrVO4·H2O and Cr2V4O13·4H2O have been prepared using peroxo-polyacids of vanadium and chromium. The transformations of these hydrated phases upon heating were studied by TG-DTA and XRD techniques and led to three crystalline anhydrous compounds: (i) phase V1-xCrxOy, which is closely related to the orthorhombic V2O5, (ii) Cr2V4O13 and (iii) monoclinic CrVO4-M. The ranges of coexistence of phases in equilibrium were also determined.  相似文献   

7.
Spinel LiMn2−x Ni x O4 compounds doped with a range of Ni (x=0–0.06) were synthesized by a spray-drying method. The structure and morphology characteristics of the powders were studied in detail by means of X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD data reveal that all the samples have well-defined spinel structure, but, with the increase in Ni content, the doped lithium manganese spinels have smaller lattice constant. The undoped and doped spinel LiMn2O4 particles are fine, narrowly distributed, and well crystallized. The electrochemical characteristics of the samples are measured in the coin-type cells in a potential range of 3.2–4.35 V vs Li/Li+. All cyclic voltammogram curves exhibit two pairs of redox reaction peaks, but, among them, there are some differences about the peak split. With the increase in the Ni content, the specific capacities of the samples decrease slightly, but their cyclic ability increases.  相似文献   

8.
LiMn1.4Cr0.2Ni0.4O4 and a series of Li4Ti5O12/LiMn1.4Cr0.2Ni0.4O4 composites were prepared by a solution method. XRD reveals that the LTO-coated LiMn1.4Cr0.2Ni0.4O4 samples have better crystallinity than that of pure LiMn1.4Cr0.2Ni0.4O4. SEM and EDX show that the surface of LiMn1.4Cr0.2Ni0.4O4 was successfully coated with Li4Ti5O12 particles after the surface modification treatment. Galvanostatic charge–discharge testing indicates 4 wt.% LTO-coated LiMn1.4Cr0.2Ni0.4O4 has the highest electrochemical performance among three samples, implying that surface modification is beneficial to the reversible intercalation and de-intercalation of Li+.  相似文献   

9.
LiMn_2O_4 and LiNi_xAlyMn_(2-x-y)O_4(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMn_2O_4 and LiNi_xAl_yMn_(2-x-y)O_4 fortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMn_2O_4 shows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMn_2O_4 samples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNi_(0.5)Al_(0.05)Mn_(1.45)O_4 delivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMn_2O_4 and LiNi_(0.5)Al_(0.05)Mn_(1.45)O_4 depict the high and low real polarization of 1562 and 1100 Ω.  相似文献   

10.
使用Ge4+、Sn4+作为掺杂离子, 通过高温固相法制备四价阳离子掺杂改性的尖晶石LiMn2O4材料. X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明, Ge4+离子取代尖晶石中Mn4+离子形成了LiMn2-xGexO4 (x=0.02,0.04, 0.06)固溶体; 而Sn4+离子则以SnO2的形式存在于尖晶石LiMn2O4的颗粒表面. Ge4+离子掺入到尖晶石LiMn2O4材料中, 抑制了锂离子在尖晶石中的有序化排列, 提高了尖晶石LiMn2O4的结构稳定性; 而在尖晶石颗粒表面的SnO2可以减少电解液中酸的含量, 抑制酸对LiMn2O4活性材料的侵蚀. 恒电流充放电测试表明, 两种离子改性后材料的容量保持率均有较大幅度的提升, 有利于促进尖晶石型LiMn2O4锂离子电池正极材料的商业化生产.  相似文献   

11.
This short review reports on the synthesis of nanosized electrode materials for lithium-ion batteries by mechanical activation (MA) and studies of their properties. Different structural types of compounds were considered, namely, compounds with a layered (LiNi1 − xy Co x Mn y O2), spinel (LiMn2O4, Li4Ti5O12), and framework (LiFePO4, LiTi2(PO4)3) structures. The compounds also differed in electronegativity, which varied from 10−4 S cm−1 for LiCoO2 to 10−9 S cm−1 for LiFePO4. The preliminary MA of mixtures of reagents in energy intensive mechanoactivators led to the formation of highly reactive precursors, and annealing of the latter formed nanosized products (the mean particle size is 50–200 nm). The local structure of the synthesized compounds and the composition of their surface were studied by spectral methods. An increase in the dispersity and defect concentration, especially in the region of the surface, improved some electrochemical characteristics. It increased the stability during cycling (LiMn2O4, at 3 V) and the regions of the formation of solid solutions during cycling (Li4Ti5O12, LiFePO4), led to growth of surface Li-ion conductivity (LiTi2(PO4)3), etc. The mechanochemical approach was also used for the synthesis of core-shell type composite materials (LiFePO4/C, LiCoO2/MeO x ) and materials based on two active electrode components (LiCoO2/LiMn2O4).  相似文献   

12.
The galvanostatic intermittent titration technique is used to study lithium transport in the LiM y Mn2 − y O4 compounds with a spinel structure intended for application as cathodic materials in lithium-ion and lithium-polymer batteries. Equilibrium intercalation isotherms of the Li x Mn2O4 and Li x Mn1.95Cr0.05O4 compounds and also their diffusion characteristics are determined at 25°C as dependent on lithium content x, 0 < x < 1. The diffusion coefficient of lithium varies in a complex way in the range of 10−10 to 10−12 cm2/s under variation of the electrode composition.  相似文献   

13.
LiMn2O4 and LiZnxPryMn2?x?yO4 (x = 0.10–0.24; y = 0.01–0.10) powders have been synthesized by sol–gel method using palmitic acid as chelating agent. The synthesized samples have been subjected to thermo gravimetric and differential thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX). The sol–gel route bestows low calcination temperature, shorter heating time, high purity, good control over stoichiometry, small particle size, high surface area, good surface morphology and better homogeneity, The XRD patterns reveal high degree of crystallinity and better phase purity. SEM and TEM images exhibit nano-sized nature particles with good agglomeration. EDAX peaks of Zn, Pr, Mn and O have been confirmed in actual compositions of LiMn2O4 and LiZnxPryMn2?x?yO4. Charge–discharge studies of pristine spinel LiMn2O4 heated at 850 °C delivers discharge capacity of 132 mA h g?1 corresponding to columbic efficiency of 73 % during the first cycle. At the end of 10th cycles, it delivers maximum discharge capacity of 112 mA h g?1 with columbic efficiency of 70 % and capacity fade of 0.15 mA h g?1 cycle?1 over the investigated 10 cycles. Inter alia, all dopants concentrations, LiZn0.10Pr0.10Mn1.80O4 exhibits the better cycling performance (1st cycle discharge capacity: 130 mA h g?1 comparing to undoped spinel 132 mA h g?1) corresponding to columbic efficiency of 73 % with capacity fade of 0.12 mA h g?1 cycle?1.  相似文献   

14.
The electrochemical properties of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 have been investigated as part of a study of xLiMO2·(1−x)Li2MO3 electrode systems for lithium batteries in which M=Co, Ni, Mn and M=Ti, Zr, Mn. The data indicate that the electrochemically inactive Li2TiO3 component contributes to the stabilization of LiMn0.5Ni0.5O2 electrodes, which improves the coulombic efficiency of Li/xLiMn0.5Ni0.5O2·(1−x)Li2TiO3 cells for x<1. The 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 electrodes provide a rechargeable capacity of approximately 175 mAh/g at 50 °C when cycled between 4.6 and 2.5 V; there is no indication of spinel formation during electrochemical cycling.  相似文献   

15.
Quaternary System ZnSe - Cr2Se3 - In2Se3 The section Zn1-xIn0.667xCr2Se4 and ZnCr2-yInySe4 as well as some samples of compositions outside these joins of the quaternary system ZnSe Cr2Se3 - In2Se3 were studied with the help of X-ray Guinier photographs of quenched samples. Whereas no detectable amounts of chromium can be incorporated into ZnIn2Se4 of the thiogallate structure (MnIn2Te4 type) in the case of the spinel ZnCr2Se4 (a = 1050.0 pm) up to 21 mol % of chromium and up to 20 mol % of zinc can be substituted by indium. However, spinel type solid solutions with larger indium content (up to a = 1076 pm) are formed by coincident substitution of both zinc and chromium corresponding to Zn1-xIn0.667xCr2-yInySe4 (0 < x + y < 0.6) with indium in both tetrahedral and octahedral lattice sites.  相似文献   

16.
Sulphur substitution of oxygen in LiMn2O4 spinel destroyed the ideal symmetry of MnO6 octahedrons. In consequence, the phase change at about room temperature is strongly retarded, manifested by lowering heat of the transition and hysteresis of the temperature dependence of electrical conductivity. The optimal conditions for preparation of sulphur substituted spinel LiMn2O4–ySy have been determined.  相似文献   

17.
A study on the structural and electrochemical properties of LiCr0.2Mn1.8O4 and LiV0.2Cr0.2Mn1.6O4 cathodes has been made with a view to understand the effect of mono- (Cr) and bication (Cr and V) substitution on LiMn2O4 spinel individually. Citric acid assisted modified sol–gel method has been followed to synthesize a series of LiMn2O4, LiCr0.2Mn1.8O4, and LiV0.2Cr0.2Mn1.6O4 cathodes, and the corresponding lattice structure, surface morphology, and site occupancy of lithium in the spinel matrix are acknowledged using X-ray diffraction, scanning electron microscopy, and magic angle spinning 7Li nuclear magnetic resonance results. The site occupancy of Cr3+ in the 16d octahedral and that of V5+ in the 16d octahedral and 8a tetrahedral positions are understood. Electrochemical cycling studies of LiCr0.2Mn1.8O4 cathode demonstrate an enhanced structural stability and better capacity retention (94%) resulting from the Cr3+ dopant-induced co-valency of Li-O-Mn bond. On the other hand, simultaneous substitution of Cr and V in LiV0.2Cr0.2Mn1.6O4 has failed to improve the electrochemical properties of native LiMn2O4 spinel cathode, mainly due to vanadium-driven cation mixing and the reduced lithium diffusion kinetics. Among the candidates chosen for the study, LiCr0.2Mn1.8O4 qualifies itself as a better cathode for rechargeable lithium battery applications.  相似文献   

18.
Ti-doped spinel LiMn2O4 is synthesized by solid-state reaction. The X-ray photoelectron spectroscopy and X-ray diffraction analysis indicate that the structure of the doped sample is Li( Mn3 + Mn1 - x 4 + Tix4 + )O4 {\hbox{Li}}\left( {{\hbox{M}}{{\hbox{n}}^{3 + }}{\hbox{Mn}}_{1 - x\,}^{4 + }{\hbox{Ti}}_x^{4 + }} \right){\hbox{O}}{}_4 . The first principle-based calculation shows that the lattice energy increases as Ti doping content increases, which indicates that Ti doping reinforces the stability of the spinel structure. The galvanostatic charge–discharge results show that the doped sample LiMn1.97Ti0.03O4 exhibits maximum discharge capacity of 135.7 mAh g−1 (C/2 rate). Moreover, after 70 cycles, the capacity retention of LiMn1.97Ti0.03O4 is 95.0% while the undoped sample LiMn2O4 shows only 84.6% retention under the same condition. Additionally, as charge–discharge rate increases to 12C, the doped sample delivers the capacity of 107 mAh g−1, which is much higher than that of the undoped sample of only 82 mAh g−1. The significantly enhanced capacity retention and rate capability are attributed to the more stable spinel structure, higher ion diffusion coefficient, and lower charge transfer resistance of the Ti-doped spinel.  相似文献   

19.
LiMn2O4-based spinels are of great interest as positive electrode materials for lithium ion batteries. LiCo x Mn2−x O4 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) spinel phases have been synthesized by novel citric acid-modified microwave-assisted sol–gel method. The structural properties of the synthesized products have been investigated by X-ray powder diffraction and scanning electron microscopy. To improve the recharge capacity of Li/LiCo x Mn2−x O4 cells, the electrochemical features of LiCo x Mn2−x O4 compounds have been evaluated as positive electrode materials. The structural properties of Co-doped oxides are very similar to LiMn2O4 electrode. Techniques like cyclic voltammetry, charge–discharge and cycle life are also used to characterize the LiCo x Mn2−x O4 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) electrodes.  相似文献   

20.
Nanostructured LiAl x Mn2 − x O4 − y Br y particles were synthesized successfully by annealing the mixed precursors, which were prepared by room-temperature solid-state coordination method using lithium acetate, manganese acetate, lithium bromide, aluminum nitrate, citric acid, and polyethylene glycol 400 as starting materials. X-ray diffractometer patterns indicated that the particles of the as-synthesized samples are well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiAl x Mn2 − x O4 − y Br y samples consist of small-sized nanoparticles. The results of galvanostatic cycling tests revealed that the initial discharge capacity of LiAl0.05Mn1.95O3.95Br0.05 is 119 mAh g−1; after the 100th cycle, its discharge capacity still remains at 92 mAh g−1. The introduction of Al and Br in LiMn2O4 bring a synergetic effect and is quite effective in increasing the capacity and elevating cycling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号